
Integrating Architectural Models:

Symbolic, Semantic and Subjective Models in

Enterprise Architecture

F. Arbab a,b F. de Boer a,b M. Bonsangue b M.M. Lankhorst c

H.A. (Erik) Proper d L. van der Torre a,e

aCWI, Amsterdam, The Netherlands, EU
bLIACS, Leiden University, The Netherlands, EU

cTelematica Instituut, Enschede, The Netherlands, EU
dICIS, Radboud University Nijmegen, Nijmegen, The Netherlands, EU

eDelft University of Technology, Delft, The Netherlands, EU

Abstract

The diversity of architectural models in enterprise architecture poses a problem to
their integration. Without such integration the effectiveness of these models in the
process of architecting systems deminishes.

In this paper we make a distinction between three classes of models. We will
illustrate how the distinctions can be used for model integration within the archi-
tectural approach. Symbolic models express properties of architectures of systems,
semantic models interpret the symbols of semantic models, and subjective models
are purposely abstracted conceptions of a domain.

Building on results obtained in the ArchiMate project, we illustrate how symbolic
models can be integrated using an architectural language, how integrated models can
be updated using the distinction between symbolic models and their visualization,
and how semantic models can be integrated using a new kind of enterprise analysis
called semantic analysis. We also suggest that subjective models can be integrated
using techniques from natural language analysis.

Key words: Enterprise Architecture, Model Integration

Email addresses: F.Arbab@cwi.nl (F. Arbab), F.de.Boer@cwi.nl (F. de Boer),
M.Bonsengue@liacs.nl (M. Bonsangue), Marc.Lankhorst@telin.nl (M.M.
Lankhorst), E.Proper@cs.ru.nl (H.A. (Erik) Proper),
L.W.N.van.der.Torre@cwi.nl (L. van der Torre).

Preprint submitted to Elsevier Science 20 January 2006

1 Introduction

In the development of information systems, software systems, and enterprise
architectures, many different architectural descriptions are used, usually in
the form of architectural models. However, whereas companies have long since
recognized the need for an integrated architectural approach, and have devel-
oped their own architecture practice, they still experience a lack of support in
the design and communication of architectures. For example, when designing
architectures, architects do not have a common, well-defined vocabulary to
avoid misunderstandings and promote clear designs, that allows for the inte-
gration of different types of architectures related to different domains, and that
is shared with various stakeholders within and outside the organization, e.g.,
management, system designers, or outsourcing partners. Other disciplines, for
example building and construction, mechanical engineering, or chemical en-
gineering, also use abstractions such as models to describe an object being
designed, but have a much more limited and standardized vocabulary and
therefore do not seem to face the problems encountered in information tech-
nology.

The important distinction between information technology architecture and,
for instance, building and construction is that the latter is concerned with
information about concrete physical things, whereas the former gives us infor-
mation about abstractions that need not have a physical counterpart. There-
fore, in information technology architecture, we do not have one abstract and
one concrete thing, but we have to deal with two abstract things: information
systems and models of these systems. One of the main difficulties in dealing
with these ‘abstractions of abstractions’ is that it is much harder for the var-
ious stakeholders involved in the design and use of an information system to
conceptualize this system than it is for, say, a contractor or inhabitant of a
house to think about its structure, functions, and other aspects. The abstract
nature of both the object being designed and the descriptions of this design
in the form of models leads to at least the following problems:

• Confusion exists with respect to the distinction among a model’s presenta-
tion, content, and semantics: what does the model look like, what elements
does it contain, and what are the relations of these elements to parts of
reality (i.e., of the information system)?

• To capture the diverse and abstract nature of information systems often re-
quires the use of multiple large, complex, and interrelated models providing
insight into the system from different viewpoints. Comprehending these in
their entirety may be a daunting task.

• In information technology the technological building blocks, their abilities
and their boundaries, are not as clear (and stable) as they are in the other
disciplines.

2

• The architectures are not just referring to technological phenomena, but
also refer to socio-economical phenomena such as business/work processes,
etc. This makes it much harder to come up with a limited set of architectural
descriptions, models and associated languages.

Due to these reasons, we need in enterprise architecture a more general and
flexible approach to the integration of architectural models. In this paper we
go beyond the kinds of model integration studied with a long tradition in
information systems, and elsewhere, by addressing the following two issues.

• We are not only interested in the static case where architectural models are
related to each other and should satisfy some coherence criteria, but we are
in particular interested in the dynamic case where models are updated, and
as a consequence other models are updated too.

• We are interested not only in syntactic approaches relating one formalism
to another one, but we also use the semantics of the models during the
integration.

To address these issues, is is essential not to confuse the various uses of “model”
in literature. The colloquial use of the term model in enterprise architecture
generally refers to a (graphical) symbolic model (viz. the IEEE standard as
presented in (IEEE (2000)), the use in UML, etc). When stakeholders refer
to architectural models and systems, they can do so only by interpreting the
symbols in the symbolic models. The interpretation of such a symbolic model
in terms of a formal language is referred to as as semantic model. A semantic
model does not have a symbolic relation to architecture, as it does not con-
tain symbolic references to reality. However, stating that the semantic model
associated to some given symbolic model captures the meaning of the latter
model, we ignore some important issues that are at play when dealing with
models in an architecting context. What is still missing is the (inherently sub-
jective) nature of human interpretation of these models. In some studies such
as Falkenberg et al. (1998), models are defined as purposely abstracted con-
ceptions (as held by a human viewer) of a domain; we call them subjective
models.

Note that our three kinds of models are not simple instances of the IEEE
standard 1471-2000 concept of model, since they have distinct relations to
other concepts. On the contrary, our notion of symbolic model is most closely
related to the notion of model in the IEEE standard, and the semantic and
subjective model can best be seen as new notions.

The work reported in this paper is the result of the ArchiMate project 1 which

1 The ArchiMate consortium consisted of ABN AMRO, Stichting Pensioenfonds
ABP, the Dutch Tax and Customs Administration, Ordina, Telematics Institute,
Centrum voor Wiskunde en Informatica, Radboud University Nijmegen, and the

3

aimed to provide concepts and techniques Jonkers et al. (2003, 2004) to sup-
port enterprise architects in the visualization, communication and analysis
of integrated architectures. An overview of the results of this project can be
found in Lankhorst and others (2005). In this paper we go beyond the results
reported there, in that we will more fundamentally explore the relationships
between the three classes of models and their respective roles in integrating
different architectural models.

The layout of this paper is as follows. We first discuss motivating examples of
model integration. Then we introduce and discuss the concepts of symbolic,
semantic and subjective model. Finally we demonstrate the usefullness of our
distinction by discussing some model integrations in the ArchiMate project.

2 Integration of Architectural Domains

In this section we discuss the motivating problem for the distinction among
symbolic, semantic and subjective models. We also discuss the relation to
complexity of architectures, and compositionality. As mentioned before, even
though companies have long since recognized the need for an integrated archi-
tectural approach and have indeed developed their own architecture practice,
they still suffer from a lack of support in the design, communication, realiza-
tion and management of architectures and related models. Several needs can
be categorized as follows with respect to different phases in the architecture
life cycle:

Design – When designing architectures, architects should use a common,
well-defined vocabulary to avoid misunderstandings and promote clear de-
signs. Such a vocabulary must not just focus on a single architecture domain,
but should allow for the integration of different types of architectural models
related to different domains.

Communication – Architectural models are shared with various stakehold-
ers within and outside the organization, e.g., management, system designers,
or outsourcing partners. To facilitate the communication about architec-
tures, it should be possible to precisely represent the relevant aspects for a
particular group of stakeholders.

Realization – To facilitate the realization of architectures and to provide
feedback from this realization to the original architectures, links should be
established with design activities on a more detailed level, e.g., business
process design, information modeling or software development.

Change – An architecture often covers a large part of an organization and
may be related to several architectural models. Therefore, changes to an

Leiden Institute of Advanced Computer Science.

4

architecture may have a profound impact. Assessing the consequences of
such changes beforehand, and carefully planning the evolution of architec-
tures are therefore very important. Until now, support for this is virtually
non-existent.

In current practice, enterprise architectures often comprise many heteroge-
neous models and other descriptions, with ill-defined or completely lacking
relations, inconsistencies, and a general lack of coherence and vision. The
main driver behind most of the needs identified above is the complexity of
architectures, their relations, and their use. Many different architectures or
architectural views co-exist within an organization. These architectures need
to be understood by different stakeholders, each at their own level. The con-
nections and dependencies that exist among these different views make life
even more difficult. Management and control of these connected architectures
is extremely complex. Primarily, we want to create insight for all those that
have to deal with architectures. There are many instances of this integration
problem, of which we discuss two examples below. In general, some integration
problems can be easily solved, for example by using an existing standard; oth-
ers are intrinsic to the architectural approach and cannot be “solved” in the
usual sense. These hard cases are intrinsic to the complexity of architecture,
and removing the problem would also remove the notion of architecture itself.
This is illustrated by Example 2.1 below.

Example 2.1
As a first example of an integration problem consider Figure 1, which con-
tains several architectural models. The five architectures models may be
expressed as models in UML, or models from cells of Zachman’s architec-
tural framework, or any kind of combination. For instance, there may be a
company that has modelled its applications in UML, and its business pro-
cesses in BPMN. In all these cases, it is unclear how concepts in one view
are related to concepts in another view. Moreover, it is unclear whether
views are compatible with each other.

The integration of the architectural models in Figure 1 is likely to be problem-
atic due to the fact that they have been developed by distinct stakeholders,
with their own concerns. One might even imagine multiple stakeholders who
have distinct models, for example of the process architecture. Relating archi-
tectures means relating the ideas of these stakeholders, of which most remain
implicit. A consequence is that we often cannot assume to have complete one-
to-one mappings, and the best we can ask for is that views are in some sense
consistent with each other. This is often called a problem of alignment.

In the complex integration cases that involve multiple stakeholders, it is clear
that integration is a bottom-up process, in the sense that first concepts and
languages of individual architectural domains are defined, and only then the

5

�����������	
������������������	
�������

���
���
������	
����������
���
������	
������� ���	�
�������	
����������	�
�������	
����������	�
�������	
�������

��������
������	
���������������
������	
������� �����������	
������������������	
�������

��

��

��

��

��

Fig. 1. Heterogeneous architectural domains

integration of the domains is addressed. We can summarize Example 2.1 by
observing that the integration of architectural models is hard due to the fact
that architectures are given and used in practice, and cannot be changed. It
is up to those who integrate these models to deal with the distinct nature of
architectural domains.

When looking at everyday architectural practice, it is clear that some inte-
gration problems occur more frequently than others. A typical pattern is that
some architectural models describe the structure of an architecture at some
point in time, whereas other models describe how the architecture changes
over time. The second example that we discuss in this paper addresses this
issue.

Example 2.2
As a second example of an integration problem, consider the first two

viewpoints discussed in the IEEE 1471-2000 standard (IEEE (2000)): the
structural viewpoint and the behavioral viewpoint. How are structure and
behavior related?

The second example touches on a problem that has been studied for a long
time, the integration of structural and behavioral models. One instance of this
problem is how structural concepts like software components are related to
behavioral concepts like application functions. Another area where this issue
has been studied is in formal methods and in simulation.

In these two examples, compositionality plays a central role in the architec-
tural approach to deal with the complexity of systems. For example, the IEEE
1471 standard defines architecture as the fundamental organization of a sys-
tem embodied in its components, their relationships to each other, and to
the environment (together with principles guiding its design and evolution).
Moreover, compositionality also plays a role when varying viewpoints on a
system are defined. The latter type of decompositions are usually functional,

6

in the sense that the functionality of an architecture is decomposed in the
functionality of its parts and their relations.

3 Symbolic, semantic and subjective models in enterprise archi-
tecture

To discuss the examples of integrating architectural models, we need a com-
mon terminology. Just like architectural diagrams are often misinterpreted
due to the fact that each stakeholders interprets the picture in its own way,
also architectural concepts are often misinterpreted. This has led to the IEEE
1471 standard which had the ambition to resolve these ambiguities. However,
despite the fact that there seems to be increasing consensus on the termi-
nology used, in practice one still finds many distinct definitions of relevant
architectural concepts, such as model, meta-model, and view. In this section
we therefore define and discuss our terminology.

3.1 Symbolic models

A symbolic model expresses properties of architectures of systems. It therefore
contains symbols that refer to reality, which explains the name of this type of
models. The role of symbols is crucial, as we do not talk about systems without
using symbols. The reason is that systems are parts of reality, and we cannot
directly talk about reality as we cannot know the system by itself. Symbolic
models are the formalization of one or more aspects of the architecture of a
concrete system.

A symbolic model is expressed using a description language, a representation
of the model that is often confused with its interpretation. For example the
expression 3+5 may be intended to mean a particular natural number, but in
this case it should just be regarded as notation as part of the syntactic model
of the natural numbers. Strictly speaking, a description language describes
both the syntactic structure of the model and its notation, i.e., the words or
symbols used for the concepts in the language. We make a strict separation
between structure and the notation, and we will use the term ‘model’ to refer
to the structure.

The core of every symbolic model is its signature. It categorises the entities of
the symbolic model according to some names that are related, linguistically
or by convention, to the things they represent. These names are called sorts.
Relations between entities of some sorts and operations on them are also
declared as relation symbols in the signature. After the relations have been

7

specified, they can be used in languages for constraining further or analyzing
the nature of the symbolic model. An example is in order here, before we go
any further. Figure 2 exhibits a structural description of the employees of a
company.

Director
responsible for

Employee

Fig. 2. Syntactic model of director-employee relationship

We need to recall that the above is a syntactic structure, that is, a description
of a symbolic model with a signature whose sorts are Employee and Director,
and with respective entities related by a relation named responsible for. As
yet we have assigned no meaning to it, we have only categorized the entities
of the symbolic model into two categories and named a relation between the
entities belonging to two sorts. The syntactic names used for the sorts and
relations push our intuition some steps ahead: we know what an employee
is, what a director is and what responsible for means. However, while these
syntactic names help us in our understanding, they are also the main source
of confusion in the communication and analysis of an architecture. We could
have named the above sorts X and Y to better retain the meaningless quality
of the syntax, and avoid confusion with semantics.

A signature thus provides a conceptual glossary in whose terms everything else
in the symbolic model must be described, similar to the English dictionary for
the English languages. Additionally, a signature comprises information to cap-
ture certain aspects of the ontology of an architecture. For example it may
include hierarchical information between sorts in terms of a “is a” relationship,
or containment information in terms of an “includes” relationship, or depen-
dency information in terms of a “requires” relationship. Signatures containing
this additional information are more general than a glossary. They provide a
conceptual schema, similar to the schema provided to biologist by the species
classification.

Director

responsible for

Employee

Fig. 3. Extended symbolic model

For example, Figure 3 extends the previous signature with an “is a” relation-
ship between the sorts Director and Employee, intuitively suggesting that every
director is also an employee. Moreover, the symbolic model may also contain
a set of actions, and the signature a set of action symbols, the meaning of
which we discuss in the following section below.

8

3.2 Semantic Models

To make the notion of semantics explicit, we distinguish between a symbolic
model and a semantic model. When stakeholders refer to architectures and
systems, they can do so only by interpreting the symbols in the symbolic
models. We call such an interpretation of a symbolic model a semantic model.
A semantic model does not have a symbolic relation to architecture, as it does
not contain symbolic references to reality.

However, there is a relation between semantic model and reality, because a
semantic model is an abstraction of the architecture. To understand this re-
lation between semantic model and architectures, one should realize that an
important goal of modeling is to predict reality. When a symbolic model makes
a prediction, we have to interpret this prediction and test it in reality. The
relevant issue in the relation between a system and semantic models of it is
how we can translate results such that we can make test cases for the symbolic
model. There are various ways in which we can visualize the relation between
the four central concepts of enterprise, architecture, symbolic model and se-
mantic model. We put the concept of architecture central, as is illustrated in
Figure 4. In general, there can be a large number of different interpretations for
the same symbolic model. This reflects the intuition that there can be many
architectures that fit a specific architectural description. The signature of a
symbolic model of an architecture specifies only some basic building blocks by
means of which the architecture is described.

��������

	�
���

�����������

����������

��������

	�
���
������������	

�	��������	
����������	

���

Fig. 4. The enterprise, its architecture, symbolic and semantic models

There are (at least!) two kinds of abstraction we use in creating a model of
reality. The first is abstracting from (properties of) the precise entity in reality
to which a concept refers. This occurs for example when we make a model of

9

the static structure of an application in terms of its components, leaving out
(i.e., abstracting from) their behavior. The second kind is abstraction from
differences between entities in reality by grouping them into a single concept.
This is sometimes referred to as generalization, and occurs for example when
we use the concept ‘employee’, which groups the individuals in a company.
This is related to the notion of ‘sorts’ discussed below.

The above four concepts and their relations are used in engineering both for
informal as well as formal models. The relevant distinction we emphasize be-
tween symbolic and semantic models is the distinction between using symbols
to refer to reality, and abstractions of reality that only refer to reality by in-
terpreting the symbols of the symbolic model. Note that this is not the same
distinction as that between informal and formal models: Within the class of
informal models, expressed for example in natural language, both kinds ex-
ist, as well as within the class of formal models, expressed for example in first
order logic. In the remainder of this section we consider formal semantics only.

The semantics of a modeling language is given by a semantic model, an in-
terpretation of the symbolic model. A semantic model usually assumes the
existence of some mathematical objects (sets for example), used to represent
the basic elements of a symbolic model. Operations and relations of a sym-
bolic model are mapped to usually better understood operations and relations
amongst the mathematical objects. As an example, the formal semantics of a
signature is provided by a collection of sets (one for each sort of the signature),
and a set of relations and functions among them, one for each relation symbol
and function symbol in the signature. Hierarchical information between sorts
is captured by the ordinary subset inclusion, whereas containment information
is denoted by the usual element-of relation.

In other words, we see the formal semantics of a symbolic model as a concrete
collection of mathematical objects interpreting a system according to a spe-
cific architectural description. As such, it involves concrete components and
their concrete relationships which may change in time because of the dynamic
behavior of a system. Concrete situations of a system are described by means
of variables typed according to the sort of the individuals they are referring
to. More concretely, for a symbolic model, we will denote by x : T a variable x
which ranges over individuals of sort T . For example, we could use the logical
sentence:

∃x : Director.∀y : Employee.Responsible for(x, y)

to constraint the interpretation of the sort Director to be a non-empty set. Note
that since Director is a Employee, also the interpretation of the latter sort will
be non-empty.

An important issue in the semantics of architectural models is the meaning of
actions. The actions occurring in a symbolic model are interpreted as changes

10

of the model based on interaction with the user. To define actions, we have to
define the input variables of the action, and how we can retrieve these input
variables from the user. In Section 4 we discuss this issue in more detail. As will
be illustrated, these formal semantics are rich enough to capture the dynamics
of a system by interpreting the symbolic (and often pictorial) information
available for describing business and software processes in ArchiMate.

Finally, in architecture often a distinction is made between the architectural
semantics and the formal semantics of a modeling language. The enterprise
under consideration is thought of in terms of architecture concepts, which exist
in the minds of, e.g., the enterprise architect. These concepts can be repre-
sented in models, which are expressed in a modeling language. Architectural
semantics is defined as the relationship between architectural concepts and
their possible representations in a modeling language (Turner (1987)). To un-
derstand this distinction, consider Venn diagrams. They are useful structures
for the visualization of the language of Boolean logic, but they are not a model
themselves. Their semantic model is given by the set-theoretical explanation
of their meaning. The formal semantics of a model, on the other hand, is a
mathematical representation of specific formal properties of that model. The
formal semantics of a computer program, for example, expresses the possible
computations of that program. Different branches of formal semantics exist,
such as denotational, operational, axiomatic, and action semantics.

3.3 Subjective models

Besides symbolic and semantic models, one finds in the enterprise architecture
references to a third kind of model, in particular in linguistic, psychological
or social theories. Here we refer to this kind of models as subjective models.

For example, the FRISCO Framework of Information system concepts defines
a model as a purposely abstracted, clear, precise and unambiguous conception.
To understand this framework, consider the relationships between stakeholder,
enterprise, architecture, and architecture description expressed in the form of a
tetrahedron in Figure 5 (which is a specialization of the FRISCO tetrahedron
Falkenberg et al. (1998)). Different stakeholders, have a different view of the
world. Not everyone’s needs can be easily accommodated by a single model.
They therefore first consider what happens if some viewer observes ‘the uni-
verse’ around him. FRISCO assumes that any viewer that perceives the world
around him first produces a conception, i.e., a mental representation, of that
part he deems relevant. Such a conception cannot be communicated about
directly, unless it is articulated somehow. In other words, a conception needs
to be represented. They argue that the distinction between subjective model
on the one hand and semantic and symbolic model on the other hand goes

11

back to long philosophical tradition. In particular, Peirce (1969a,b,c,d) argues
that both the perception and conception of a viewer are strongly influenced
by his interest in the observed universe.

Enterprise

Architecture

Stakeholder

Architecture
description

Fig. 5. Relationship between enterprise, stakeholder, architecture, and architecture
description

The distinction between subjective, symbolic and semantic model is also re-
lated to Morris’ meaning triangle Morris (1946), where a distinction is made
between a “sign”, “object” and “concept”. The notion of concept is taken to
be a subjective notion, while sign and objects are considered to be objective
notions. A sign is some object that is used as a representation of something
else, while an object is an observable and identifiable individual thing. The
world of signs corresponds to the world of symbolic models, while the world of
objects corresponds to semantic models, and the world of concepts corresponds
to the subjective models.

4 Integration of models in ArchiMate

In this section we illustrate how the distinction among symbolic, semantic and
subjective models is used in the integration of architectural models, based on
results from the ArchiMate project.

4.1 Integration of symbolic models (static case)

The basis for model integration is an architectural description language, called
the ArchiMate language (Lankhorst and others (2005)). Service orientation
may typically lead to a layered view of enterprise architecture models, where
the service concept is one of the main linking pins between the different layers.

12

Service layers with services made available to higher layers are interleaved
with implementation layers that realize the services. Within a layer, there
may also be internal services, e.g., services of supporting applications that are
used by the end-user applications. How this leads to a stack of service layers
and implementation layers is shown in Figure 6. These are linked by used by
relations, showing how the implementation layers make use of the services of
other (typically ‘lower’) layers, and realization relations, showing how services
are realized in an implementation layer. In this context, we distinguish three
main layers:

• The business layer offers products and services to external customers, which
are realized in the organization by business processes (performed by business
actors or roles).

• The application layer supports the business layer with application services
which are realized by (software) application components.

• The technology layer offers infrastructural services (e.g., processing, stor-
age, and communication services) needed to run applications, realized by
computer and communication devices and system software.

���������	��
���������

��
����������	��������

����������	���������

����������	��������

��������	���������

��������	��������

����������������

���������	����������	

���������

�������	����������	

��������

�������	����������	

���������

���������	����������	

���������

�������	����������	

��������

�������	����������	

���������

Fig. 6. Layered view

A premise of the ArchiMate language is that the general structure of models
within the different layers is similar. The same types of concepts and relations
are used, although their exact nature and granularity differ. As a result of this
uniformity, models created for the different layers can be aligned with each
other quite easily. Within each layer, the language is structured according
to the three dimensions: internal-external, individual-collective, and behavior-
structure. Figure 7 shows the core concepts that are found in each layer along
these dimensions.

As an example, Figure 8 presents two models, a diagram and a landscape
map Sanden and Sturm (1997). The diagram on the left canvas visualizes five

13

����������

���	�
�

�������
�������

����������

���	�
�

���������

���	�
�

��������

��������

�����

Fig. 7. The core concepts in three dimensions

products on the left, five business functions on the right, and ten application
components in the middle. The landscape map on the right canvas visualizes an
easy to understand 2D ‘map’. The two models refer to the same architecture.
Moreover, in this particular case the landscape map has been automatically
generated from the underlying model.

Fig. 8. Model with associated landscape map view

A more detailed exposition of the ArchiMate language and its uses can be
found in Lankhorst and others (2005). It has been developed and tested in
cooperation with several companies. The language is a coarse grained lan-
guage, which facilitates the integration of symbolic models. However, the use

14

of a symbolic language also has its limitations, in particular when we are in-
terested in changing models, and when the symbolic models have semantics
which have to be respected. These two issues are discussed in the following
two subsections.

4.2 Integration of symbolic models: dynamic case

Reconsider the model together with its landscape map in Figure 8, and assume
that they are integrated in the sense that the landscape map is generated from
the diagram. Now assume moreover that someone changes one of these two
models. Then it may be the case that the models are no longer integrated.
The problem of the dynamic case of symbolic model integration is to develop
techniques to ensure that the models remain integrated.

We introduce special actions-in-models. They are defined in terms of the effects
they have on elements of the underlying model. For example, consider a view
on a business process model, and an action that merges two processes into
a single process. Issues that are relevant for this action are the effects of the
merger, for example the removal of processes, the addition of a new process, or
the transfer of some relations from an old, removed process to a new process.

Mapping a seemingly simple change to the landscape map onto the necessary
modifications of the model may become quite complicated. Since a landscape
map abstracts from many aspects of the underlying model, such a mapping
might be ambiguous: many different modifications to the model might cor-
respond to the same change of the landscape map. Human intervention is
required to solve this, but a landscape map tool might suggest where the
impact of the change is located.

In the example of Figure 9, you may for instance want to remove the seemingly
redundant Legal Aid CRM system by invoking a ‘remove overlap’ operation on
this object. This operation influences both the visualization and the architec-
tural model. Figure 9 illustrates the effects of the operation on the underlying
model. First, you select the object to be removed, in this case the Legal Aid
CRM system. The envisaged tool colors this object and maps it back onto
the underlying object in the architecture. Next, the relations connecting this
object to its environment are computed, possibly using the impact-of-change
analysis techniques described in the following section (the second part of Fig-
ure 9). Here, this concerns the relations of Legal Aid CRM with the Web
portal and the Legal Aid back-office system. These relations will have to be
connected to one or more objects that replace the objects that are to be re-
moved. Since we have chosen a ‘remove overlap’ operation, the landscape tool
computes with which other objects Legal Aid CRM overlaps, in this case the

15

���������	�

��

�

����

���

�
���

���

�����
���
�����	�������
�

��
�������

������

���	��������	

��
�������

��	�	����

����������	

���

�	����	�

����������	

�
�������

����� ��

����

!
�

������

������
	�
�

����������	

��"�����

�
�������

��"

���������	�

��

�

����

���

�
���

���

�����
���
�����	�������
�

��
�������

������

���	��������	

��
�������

��	�	����

����������	

���

�	����	�

����������	

�
�������

����� ��

����

!
�

������

������
	�
�

����������	

��"�����

�
�������

��"

���������	�

��

�

����

���

�
���

���

�����
���
�����	�������
�

��
�������

������

���	��������	

��
�������

��	�	����

����������	

���

�	����	�

����������	

�
�������

����� ��

����

!
�

������

������
	�
�

����������	

��"�����

�
�������

��"

���������	�

��

�

����

���

�
���

���

�����
���
�����	�������
�

��
�������

������

���	��������	

��
�������

��	�	����

����������	

���

�	����	�

����������	

�
�������

����� ��

����

!
�

������

������
	�
�

����������	

��"�����

�
�������

��"

�����������
��	�
����

����������
������
�	

�����
��������

�
��������

���������
��	�����

��
��	�����

�����
��	�����

�
��
��	�����

���������
��	�����

��������	

�	

�������	��
��	���

�����������
	���������		������������

���������	�
��
����	�������	���

���	
����
�	��
������
������

���	
����
���

���������	�
 �	��	
�	��
��	���

��	���		
������
�	

�
����	

���������
��������

�	������	���
	��
��	���

�����������
��	�
����

����������
������
�	

�����
��������

�
��������

���������
��	�����

��
��	�����

�����
��	�����

�
��
��	�����

���������
��	�����

��������	

�	

�������	��
��	���

�����������
	���������		������������

���������	�
��
����	�������	���

���	
����
�	��
������
������

���	
����
���

���������	�
 �	��	
�	��
��	���

��	���		
������
�	

�
����	

���������
��������

�	������	���
	��
��	���

Fig. 9. Editing a landscape map

16

CRM system. The relations formerly connecting Legal Aid CRM are then
moved to the other CRM system, unless these already exist (e.g., the relation
with the Web portal).

Naturally, this scenario presents an ideal situation with minimal user inter-
vention. In reality, a tool cannot always decide how a proposed change is to be
mapped back onto the model, and may only present the user with a number
of options. For example, if the functionality of the Legal Aid CRM system
would overlap with more than one other system, remapping its relations re-
quires knowledge about the correspondence between these relations and the
functions realized by these other systems.

4.3 Integration of semantic models

We can go beyond the syntactic approach of integrating symbolic models by
taking their semantics into account. In particular, we show that formal meth-
ods can be used when we introduce a few basic definitions we briefly explained
before, such as signature, symbolic model and interpretation. Our approach
can be contrasted with the original approach in UML, see also the related
work section (Section 5) of this paper. In this approach, semantics was ex-
plicitly left out of the programme. People who used the models can develop
semantics for them, but a general semantics was not supplied. This approach
also stemmed from the origins of the UML as a combination of three existing
notations that did not have formal semantics. Hence, the focus of UML was
and is on notation, i.e., syntax, and not on semantics. Although some of the
diagrams of the more recent versions of UML have a formal semantics, see,
e.g., the token-based Petrinet-like semantics of activity diagrams in UML 2.0,
there is no overall semantics for the entire language. We have taken the oppo-
site approach. We do not put the notation of the language central, but rather
focus on the meaning of the language concepts and their relations. Of course,
any modeling language needs a notation and we do supply a standard way of
depicting the ArchiMate concepts, but this is subordinate to the architectural
semantics of the language.

For dynamics of architectures, functional analysis techniques based on formal
approaches such as process algebras and data flow networks are useful. Issues
like two roles acting at the same time, overwriting or destroying each other’s
work, can be identified and then a suitable protocol can be designed to prevent
the problem. Thus, a functional behavior analysis based on formal methods is
primarily a qualitative analysis that can detect logical errors, leads to a better
consistency and focuses on the logic of models.

The dynamics of a concrete system with an architectural description given by

17

its signature can be specified in different ways; we distinguish between spec-
ifications tailored towards control flow modeling and those tailored towards
data flow modeling. For control flow modeling, we give a brief introduction
into process algebra, while for data flow modeling, we introduce the reader
into data flow networks.

To illustrate the use of these formal methods, we use the enterprise architec-
ture of a small company, ArchiSell, modelled using the ArchiMate language.
In ArchiSell, employees sell products to customers. Various suppliers deliver
the products to ArchiSell. Employees of ArchiSell are responsible for order-
ing products and for selling them. Once products are delivered to ArchiSell,
each product is assigned to an owner responsible for selling the product. More
specifically, we look at the business process architecture for ordering prod-
ucts, visualized in Figure 10. To describe this enterprise we use the ArchiMate
modeling concepts and their relationships. In particular, we use structural con-
cepts (product, role and object) and structural relationships (association), but
also behavioral concepts (process) and behavioral relationships (triggering).
Behavioral and structural concepts are connected by means of the assignment
and access relations.

��������

�		��
�����	

�����
���

����	
�

�		��
��	�

���	�����������

����	

�����
��������

���	����

�����

�����
��

����	
�

�����
��

����

����	

Fig. 10. An example business-process architecture

In order to fulfill the business process for ordering a product, the employee
has to perform the following activities:

(1) Before placing an order, an employee must register the order within the
Order Registry. This Order Registry is for administration purposes. It is
used to check orders upon acceptance of goods later in the process. Orders
contain a list of products to be ordered.

(2) After that, the employee places the order with the supplier. Based on
the order, the supplier is supposed to collect the products and to deliver
them as soon as possible.

(3) As soon as the supplier delivers the products, the employee first checks if
there is an order that refers to this delivery. Then, the employee accepts

18

the products.
(4) Next, the employee registers the acceptance of the products within the

Product Registry and determines which employee will be the owner of the
products.

Although the example is rather trivial, it serves to illustrate how an architec-
ture description can be formalized and how it can be subjected to functional
analysis.

To obtain a formal model of a system as a semantic interpretation of the
symbolic model of its architectural description, we start with an interpretation
of the signature. An interpretation I of the types of a signature assigns to
each primitive sort S a set I(S) of individuals of sort S which respects the
sub-sort ordering: if S1 is a sub-sort of S2 then I(S1) is a subset of I(S2).
Any primitive sort is interpreted by a subset of a universe which is given
by the union of the interpretation of all primitive sorts. The subset relation
expresses the hierarchy between primitive sorts. An interpretation I of the
primitive sorts of a signature of an architecture can be inductively extended
to an interpretation of more complex types. For example, an interpretation of
the product type T1 × T2 is given by the Cartesian product I(T1) × I(T2) of
the sets I(T1) and I(T2). The function type T1→T2 thus denotes the set of all
functions from the universe to itself such that the image of I(T1) is contained in

I(T2). In general, there can be a large number of different interpretations for a
signature. This reflects the intuition that there are many possible architectures
that fit a specific architectural description.

The semantic model of a system involves its concrete components and their
concrete relationships, which may change in time because of the dynamic
behavior of a system. To refer to the concrete situation of a system, we have
to extend its signature with names for referring to the individuals of the types
and relations. For a symbolic model, we denote by n : T a name n, which
ranges over individuals of type T .

To formalize the behavior of a system using this semantic model, we can, for
instance, use process algebra. Process algebra (Baeten and Weijland (1990);
Bergstra et al. (2001)) is a formal description technique for specifying the
control flow behavior of complex systems. Starting from the language syntax,
each statement of the language is supplied with some kind of behavior, and
a semantic equivalence says which behaviors are identical. Process algebras
express such equivalences in axioms or equational laws. The axioms are to
be sound, i.e., if two behaviors can be equated then they are semantically
equivalent. The converse statement is optional, and is called completeness,
i.e., if two behaviors are semantically equivalent then they can be equated.

The system is captured as a set of processes interacting with each other accord-

19

ing to predefined rules. Starting from a set of basic actions, processes may be
hierarchically composed by means of operators, e.g., sequential composition,
choice, parallel composition.

We derive these basic actions from the functions of a symbolic model of an ar-
chitecture. Now let us consider the process steps within the ArchiSell example.
Within the process algebra interpretation, processes are specified as functions.
The types of the arguments and result values are determined as follows:

• A role, which is assigned to a process specifies the type of both an argument
and a result value of the corresponding function.

• An outgoing access relation from a process to a data object specifies the
type of both an argument and a result value of the corresponding function.

• An incoming access relation from an object to a process only specifies the
type of the corresponding argument (this captures the property of ‘read-
only’).

This results in the following functions:

Register order placement:

domain name = Employee

domain name = Order Registry

codomain name = Employee

codomain name = Order Registry

A data flow network (Jagannathan (1995)) is another formal description tech-
nique for the behavioral specifications of complex systems. Such a network
consists of some processes, the functions of a symbolic model that communi-
cate by passing data over lines. A process is a transformation of data within
the system, whereas a line is a directed FIFO channel connecting at most two
processes. Data passed over a line by a process will arrive in an unspecified
but finite amount of time at the destination process in the same order as they
are sent.

Data flow diagrams can be used to provide a clear representation of any busi-
ness function. The technique starts with an overall picture of the business and
continues by analyzing each of the functional areas of interest. This analysis
can be carried out to the level of detail required. The technique exploits a
method called top-down expansion to conduct the analysis in a targeted way.
The result is a series of diagrams that represent the business activities in a
way that is precise, clear and easy to communicate.

In a data flow interpretation of the ArchiSell process, we consider each indi-
vidual process step as an independent data-consuming/data-producing entity.

20

Such an entity has input ports and output ports. Within the data flow interpre-
tation we are interested in the data flow within the process, but not directly in
the actors (or roles) that perform the process. Therefore, this interpretation
is specifically suited for situations in which many details are known about
the data and less about the actors. However, as we will illustrate, a data flow
interpretation can help us in the assignment of actors to process steps.

���������	�
���
��������

�����	�
���
�	����	
���

�
�������
��	
���

���������

��	
����

��������
� �

� �

� �

�

	

	� 	� 		

	

�� ��

Fig. 11. A example data flow network

Figure 11 illustrates the way in which we can interpret the example as a data
flow network. Note the following:

• We leave out any information about roles and individuals within the role
sort. So, the data flow diagram does not contain information about which
actor performs which process steps.

• We specify registries as stores, i.e., special functions, which resemble places
in which information can be stored and from which the same information
can be retrieved later.

• We explicitly identify which input/output ports receive/send which kind
of values. A practical way is to begin with identifying the values on the
input/output ports, and then to connect the output ports to other input
ports.

4.4 Integration of subjective models

Just like semantic models are important to enterprise architecture because
they are a bridge to formal methods and theoretical computer science, subjec-
tive models are important to enterprise architecture as they are a bridge to for
example linguistic, psychological and social theories. Consequently, using se-
mantic models we argue that this distinction with symbolic models facilitates
(or opens up) the use of formal methods in enterprise architecture, here using
subjective models we argue that its distinction with symbolic and semantic
models facilitates the use of (computational) linguistic methods in enterprise
architecture.) For example, subjective models may be expressed in natural lan-
guage and consequently formal machinery developed in linguistics (eg around

21

van Benthem in the Amsterdam school of logic, but also Kamp’s DRT or any
other classical technique) can be used within (enterprise) architecture.

The ArchiMate project has not directly addressed these ideas, but current
research within our group is indeed looking at ways to aid groups of actors to
disambiguate models (such as architectural models) and also ground their
common understanding Hoppenbrouwers et al. (2005a,c,f,d); Proper et al.
(2005); Hoppenbrouwers et al. (2005b,e). This requires a combination between
formal approaches and communicative approaches from social sciences. The
distinction will be important for the following applications:

• To create a mutual understanding among stakeholders, we need to ensure
that the subjective models that they harbor are as similar as possible. Be-
cause of their different backgrounds, fields of expertise, needs, and possibly
even their psychological make-up, different stakeholders may need distinct
symbolic models to arrive at approximately the same subjective model.

• Especially important in this respect is to bring about a successful communi-
cation on relations among different domains described by different architec-
tures (e.g., processes vs. applications), since this will often involve multiple
groups of stakeholders. Clear communication is also very important in the
case of outsourcing of parts of the implementation of an architecture to ex-
ternal organizations. The original architect is often not available to explain
the meaning of a design, so the architecture should speak for itself.

5 Related Work

A wide variety of organization and process modeling languages are currently
in use. The conceptual domains that are covered differ from language to lan-
guage. In many languages, the relations between domains are not clearly de-
fined. Some of the most popular languages are proprietary to a specific software
tool. Relevant languages in this category include the ebXML set of standards
for XML-based electronic business Business Process Project Team (2001), de-
veloped by OASIS and UN/CEFACT, IDEF U.S. Department of Commerce
(1993), originating from the US Ministry of Defence, ARIS (Scheer (1994)),
part of the widely used ARIS Toolset, and the Testbed language for business
process modeling (Eertink et al. (1999)). Recent standardization efforts in this
area are carried out by the Business Process Management Initiative, with the
graphical Business Process Modeling Notation BPMN (BPMI (2003)) as its
main result. Support for this language from vendors of business process mod-
eling and enterprise architecture tools is increasing. However, BPMN’s scope
is limited to business processes and it does not provide concepts for modeling
e.g. organizational structures, data models, or the relation between business
activities and supporting IT applications, making it of limited use in enterprise

22

architecture.

The Reference Model for Open Distributed Processing (ISO (1998)) is a joint
ISO/1998-ISO-RMODP standard for the specification open distributed sys-
tems. It defines five viewpoints on an ODP system that each has their own
specification language. Important for enterprise architecture is the enterprise
viewpoint, which describes purpose, scope and policies of a system, the RM-
ODP Enterprise Language has been defined in which, e.g., business objectives
and business processes can be modelled ISO (1998).

In contrast to organization and business process modeling, where there is no
single, standard modeling language, in software modeling the Unified Modeling
Language (UML) (Booch et al. (1999)) has become a true world standard.
UML is the mainstream modeling approach within IT, and its use is expanding
into other areas, e.g., in business modeling (Eriksson and Penker (1998)).
Compared to the earlier versions, the support for architectural modeling has
improved in the recent UML 2.0 standard (OMG (2003)).

The UML has a so-called profile for Enterprise Distributed Object Computing
(EDOC), which provides an architecture and modeling support for collabo-
rative or Internet computing, with technologies such as web services, Enter-
prise Java Beans, and Corba components (OMG (2002)). This makes UML
an important language not only for modeling software systems, but also for
business processes and for general business architecture. The UML has either
incorporated or superseded most of the older IT modeling techniques still in
use. However, it is not easily accessible and understandable for managers and
business specialists; therefore, special visualizations and views of UML mod-
els should be provided. Another important weakness of the UML is the large
number of diagram types, with poorly defined relations between them. This is
another illustration of the lack of integration discussed in the introduction of
this paper. Given the importance of the UML, other modeling languages will
likely provide an interface or mapping to it.

Most languages mentioned above provide concepts to model, e.g., detailed
business processes, but not the relationships between different processes. They
are therefore not particularly suited to model architectures (IEEE (2000)).
Architecture description languages (ADLs) define high-level concepts for ar-
chitecture description, such as components and connectors. A large number
of ADLs have been proposed, some for specific application areas, some more
generally applicable, but mostly with a focus on software architecture. Med-
vidovic and Taylor (2000) describe the basics of ADLs and compare the most
important ADLs with each other. Most have an academic background, and
their application in practice is limited. However, they have a sound formal
foundation, which makes them suitable for unambiguous specifications and
amenable to different types of analysis. The ADL ACME Garlan et al. (1997)

23

is widely accepted as a standard to exchange architectural information, also
between other ADLs. There are initiatives to integrate ACME in UML, both
by defining translations between the languages and by a collaboration with
OMG to include ACME concepts in UML 2.0 OMG (2003). In this way, the
concepts will be made available to a large user base and be supported by a
wide range of software tools. This obviates the need for a separate ADL for
modeling software systems. The Architecture Description Markup Language
(ADML) was originally developed as an XML encoding of ACME.

Finally, another important trend is OMG’s Model Driven Architecture (MDA)
approach (Frankel (2003)). Although it strongly leans on OMG standards such
as UML, the applicability of the approach is not limited to specific languages.
MDA comprises three abstraction levels:

• The requirements for the system are modelled in a Computation Indepen-
dent Model (CIM) describing the situation in which the system will be used.
Such a model is sometimes called a subjective model or a business model. It
hides much or all information about the use of automated data processing
systems.

• The Platform Independent Model (PIM) describes the operation of a sys-
tem while hiding the details necessary for a particular platform. A PIM
shows that part of the complete specification that does not change from one
platform to another.

• A Platform Specific Model (PSM) combines the specifications in the PIM
with the details that specify how that system uses a particular type of
platform.

UML is endorsed as the modeling language for both PIMs and PSMs. At the
CIM level, which roughly corresponds with the enterprise-architectural level
at which the ArchiMate ideas are targeted, things are less clear.

6 Conclusion

A model is an abstract and unambiguous representation of something (in the
real world) that focuses on specific aspects or elements and abstracts from
other elements, based on the purpose for which the model is created. Because
of their formalized structure, models lend themselves to various kinds of auto-
mated processing, visualization, analysis, tests, and simulations. Furthermore,
the rigour of a model-based approach also compels architects to work in a more
meticulous way and helps to dispel the unfavorable reputation of architecture
as just drawing some “pretty pictures.”

An integrated architectural approach is indispensable to control today’s com-

24

plex organizations and information systems. It is widely recognized that a
company needs to “do architecture”; the legacy spaghetti of the past has
shown us that business and IT development without an architectural vision
leads to uncontrollable systems that can only be adapted with great diffi-
culty. However, architectures are seldom defined on a single level. Within an
enterprise, many different but related issues need to be addressed. Business
processes should contribute to an organization’s products and services, ap-
plications should support these processes, systems and networks should be
designed to handle the applications, and all of these should be in line with the
overall goals of the organization. Many of these domains have their own archi-
tecture practice, and hence different aspects of the enterprise will be described
in different architectures. These architectures cannot be viewed in isolation.

For example, architectural domains are related, and structural and behavioral
viewpoints are related. The integration has to deal with the the fact that the
various viewpoints are defined by stakeholders with their own concerns.

The core of our approach to enterprise architecture is therefore that multiple
domains should be viewed in a coherent, integrated way. We provide support
for architects and other stakeholders in the design and use of such integrated
architectures. To this end, we have to provide adequate concepts for specifying
architectures on the one hand, and on the other hand support the architect
with visualization and analysis techniques that create insight in their struc-
ture and relations. In this approach, relations with existing standards and
tools are to be emphasized; we aim to integrate what is already available and
useful. The approach that we follow is very generic and systematically covers
both the necessary architectural concepts and the supporting techniques for
visualization, analysis and use of architectures.

A distinction is made between the content of a view and its visualization, and
a distinction is made between a symbolic model that refers to the enterprise
architecture, and a semantic model as an abstraction from the architecture
and which interprets the symbolic model. The core of every symbolic model
is its signature, which categorises the entities of the symbolic model.

Acknowledgment

This paper results from the ArchiMate project (http://archimate.telin.nl/),
a research initiative that has provided concepts and techniques to support
enterprise architects in the visualisation, communication and analysis of in-
tegrated architectures. The ArchiMate consortium consists of ABN AMRO,
Stichting Pensioenfonds ABP, the Dutch Tax and Customs Administration,
Ordina, Telematica Instituut, Centrum voor Wiskunde en Informatica, Rad-

25

boud University Nijmegen, and the Leiden Institute of Advanced Computer
Science.

References

Baeten, J., Weijland, W., 1990. Process Algebra. Cambridge University Press,
Cambridge, United Kingdom, EU.

Bergstra, J., Ponse, A., Smolka, S. (Eds.), 2001. Handbook of Process Algebra.
Elsevier Science Publishers, North Holland.

Booch, G., Rumbaugh, J., Jacobson, I., 1999. The Unified Modelling Lan-
guage User Guide. Addison Wesley, Reading, Massachusetts, USA. ISBN
0201571684

BPMI, 2003. The Business Process Modeling Notation. Tech. rep., Business
Process Management Initiative.
URL http://www.bpmi.org

Business Process Project Team, 2001. ebXML Business Process Specification
Schema Version 1.01.
URL http://www.ebxml.org/specs/ebBPSS.pdf

Eertink, H., Janssen, W., Oude Luttighuis, P., Teeuw, W., Vissers, C., 1999.
A Business Process Design Language. In: Proceedings of the First World
Congress on Formal Methods.

Eriksson, H.-E., Penker, M., 1998. Business Modeling with UML: Business
Patterns at Work. Wiley, New York, New York, USA.

Falkenberg, E., Verrijn–Stuart, A., Voss, K., Hesse, W., Lindgreen, P., Nils-
son, B., Oei, J., Rolland, C., Stamper, R. a. (Eds.), 1998. A Framework of
Information Systems Concepts. IFIP WG 8.1 Task Group FRISCO, IFIP,
Laxenburg, Austria, EU. ISBN 3901882014

Frankel, D., 2003. Model Driven Architecture: Applying MDA to Enterprise
Computing. Wiley, New York, New York, USA.

Garlan, D., Monroe, R., Wile, D., 1997. ACME: An Architecture Description
Interchange Language. In: Proceedings of CASCON ‘97. pp. 169–183.

Hoppenbrouwers, S., Bleeker, A., Proper, H. E., 2005a. Facing the Conceptual
Complexities in Business Domain Modeling. Computing Letters 1 (2), 59–
68.

Hoppenbrouwers, S., Proper, H. E., Reijswoud, V. v., 2005b. Navigating the
Methodology Jungle – The communicative role of modelling techniques in
information system development. Computing Letters 1 (3).

Hoppenbrouwers, S., Proper, H. E., Weide, T. v. d., June 2005c. A Funda-
mental View on the Process of Conceptual Modeling. In: Delcambre, L.,
Kop, C., Mayr, H., M ylopoulos, J., Pastor, O. (Eds.), Conceptual Mod-
eling – ER 2005 – 24 International Conference on Conceptual Modeling,
Klagenfurt, Austria, EU. Vol. 3716 of Lecture Notes in Computer Science.
Springer–Verlag, Berlin, Germany, pp. 128–143.

26

http://www.bpmi.org
http://www.ebxml.org/specs/ebBPSS.pdf

URL doi:10.1007/11568322_9 ISBN 3540293892
Hoppenbrouwers, S., Proper, H. E., Weide, T. v. d., June 2005d. Formal Mod-

elling as a Grounded Conversation. In: Goldkuhl, G., Lind, M., Haraldson,
S. (Eds.), Proceedings of the 10th International Working Conference on t
he Language Action Perspective on Communication Modelling (LAP‘05).
Linköpings Universitet and Hogskolan I Boras, Linköping, Sweden, EU,
Kiruna, Sweden, EU, pp. 139–155.

Hoppenbrouwers, S., Proper, H. E., Weide, T. v. d., 2005e. Towards explicit
strategies for modeling. In: Halpin, T., Siau, K., Krogstie, J. (Eds.), Pro-
ceedings of the Workshop on Evaluating Modeling Methods for Systems
Analysis and Design (EMMSAD‘05), held in conjunctiun with the 17th
Conference on Advanced Information Systems 2005 (CAiSE 2005). FEUP,
Porto, Portugal, EU, Porto, Portugal, EU, pp. 485–492. ISBN 9727520774

Hoppenbrouwers, S., Proper, H. E., Weide, T. v. d., June 2005f. Understanding
the Requirements on Modelling Techniques. In: Pastor, O., Falcao e Cunha,
J. (Eds.), 17th International Conference on Advanced Information Systems
Engineering, CAiSE 2005, Porto, Portugal, EU. Vol. 3520 of Lecture Notes
in Computer Science. Springer–Verlag, Berlin, Germany, pp. 262–276.
URL doi:10.1007/11431855_19 ISBN 3540260951

IEEE, September 2000. Recommended Practice for Architectural Description
of Software Intensive Systems. Tech. Rep. IEEE P1471–2000, The Archi-
tecture Working Group of the Software Engineering Committee, Standards
Department, IEEE, Piscataway, New Jersey, USA.
URL http://www.ieee.org ISBN 0738125180

ISO, 1998. Information technology – Open Distributed Processing – Reference
model: Overview. ISO/IEC 10746–1:1998(E).
URL http://www.iso.org

Jagannathan, R., 1995. Dataflow Models. In: Zomaya, E. (Ed.), Parallel and
Distributed Computing Handbook. McGraw–Hill, New York, New York,
USA.

Jonkers, H., Lankhorst, M., Buuren, R. v., Hoppenbrouwers, S., Bonsangue,
M., Torre, L. v. d., 2004. Concepts for Modeling Enterprise Architectures.
International Journal of Cooperative Information Systems 13 (3), 257–288.

Jonkers, H., Veldhuijzen van Zanten, G., Buuren, R. v., Arbab, F., Boer, F. d.,
Bonsangue, M., Bosma, H., Doest, H. t., Groenewegen, L., Guillen Scholten,
J., Hoppenbrouwers, S., Iacob, M.-E., Janssen, W., Lankhorst, M., Leeuwen,
D. v., Proper, H. E., Stam, A., Torre, L. v. d., September 2003. Towards
a Language for Coherent Enterprise Architecture Descriptions. In: Steen,
M., Bryant, B. (Eds.), 7th IEEE International Enterprise Distributed Ob-
ject Computing Conference (EDOC 2003), Brisbane, Queensland, Australia.
IEEE, Los Alamitos, California, USA, pp. 28–39. ISBN 0769519946

Lankhorst, M., others, 2005. Enterprise Architecture at Work: Modelling,
Communication and Analysis. Springer, Berlin, Germany, EU. ISBN
3540243712

Medvidovic, N., Taylor, R., January 2000. A classification and comparison

27

doi:10.1007/11568322_9
doi:10.1007/11431855_19
http://www.ieee.org
http://www.iso.org

framework for software architecture description languages. IEEE Transac-
tions on Software Engineering 26 (1), 70–93.

Morris, C., 1946. Signs, Language and Behaviour. Prentice–Hall/Braziller,
New York, New York, USA.

OMG, 2002. UML Profile for Enterprise Distributed Object Computing Spec-
ification. Tech. rep., The Object Management Group.
URL http://www.omg.org/docs/ptc/03-09-05.pdf

OMG, August 2003. UML 2.0 Superstructure Specification – Final Adopted
Specification. Tech. Rep. ptc/03–08–02.
URL http://www.omg.org

Peirce, C., 1969a. Volumes I and II – Principles of Philosophy and Elements
of Logic. Collected Papers of C.S. Peirce. Harvard University Press, Boston,
Massachusetts, USA. ISBN 0674138007

Peirce, C., 1969b. Volumes III and IV – Exact Logic and The Simplest Math-
ematics. Collected Papers of C.S. Peirce. Harvard University Press, Boston,
Massachusetts, USA. ISBN 0674138005

Peirce, C., 1969c. Volumes V and VI – Pragmatism and Pragmaticism and
Scientific Metaphysics. Collected Papers of C.S. Peirce. Harvard University
Press, Boston, Massachusetts, USA. ISBN 0674138023

Peirce, C., 1969d. Volumes VII and VIII – Science and Philosophy and Re-
views, Correspondence and Bibliography. Collected Papers of C.S. Peirce.
Harvard University Press, Boston, Massachusetts, USA. ISBN 0674138031

Proper, H. E., Verrijn–Stuart, A., Hoppenbrouwers, S., January 2005. Towards
Utility–based Selection of Architecture–Modelling Concepts. In: Hartmann,
S., Stumptner, M. (Eds.), Proceedings of the Second Asia–Pacific Con-
ference on Conceptual Modelling (APCCM2005), Newcastle, New South
Wales, Australia. Vol. 42 of Conferences in Research and Practice in In-
formation Technology Series. Australian Computer Society, Sydney, New
South Wales, Australia, pp. 25–36. ISBN 1920682252

Sanden, W. v. d., Sturm, B., 1997. Informatie–architectuur – de infrastruc-
turele benadering. Panfox, Rosmalen, The Netherlands, EU, in Dutch. ISBN
9080127027

Scheer, A.-W., 1994. Business Process Engineering: Reference Models for In-
dustrial Enterprises, 2nd Edition. Springer, Berlin, Germany, EU.

Turner, K., 1987. An Architectural Semantics for LOTOS. In: Proceedings
of the 7th International Conference on Protocol Specification, Testing, and
Verification. pp. 15–28.

U.S. Department of Commerce, 1993. Integration Definition for Function Mod-
eling (IDEF0) Draft. Federal Information Processing Standards Publicati.

28

http://www.omg.org/docs/ptc/03-09-05.pdf
http://www.omg.org

	Introduction
	Integration of Architectural Domains
	Symbolic, semantic and subjective models in enterprise architecture
	Symbolic models
	Semantic Models
	Subjective models

	Integration of models in ArchiMate
	Integration of symbolic models (static case)
	Integration of symbolic models: dynamic case
	Integration of semantic models
	Integration of subjective models

	Related Work
	Conclusion

