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Abstract We show how a symbolic model checker for linear hybrid au-
tomata can be used to analyze a biphase mark protocol. This protocol
was first verified formally by Moore [Mo094] using a model of asynchrony.
In this paper we demonstrate that algorithmic methods can automati-
cally verify the correctness of the protocol for wider clock drifts. Unlike
Moore [Mo0094], our model allows for clock jitter. We believe that linear
hybrid automata enable a natural way of modeling the protocol.
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1 Introduction

The goal of this paper is to prove the correctness of a biphase mark protocol
within the model of linear hybrid automata [AHH93]. Biphase mark [Moo094]
was first analyzed by Moore using a model of asynchrony. The correctness was
checked using the Boyer-Moore theorem prover, Nqthm [BM88]. In this paper,
we consider the following questions:

— How natural is the modeling of biphase mark in the formalism of linear
hybrid automata and how complex are the correctness proof of the protocol
in that formalism?

— Is it possible to generalize or improve Moore’s results [Moo094]?

The biphase mark protocol is a convention for representing both a string of
bits and clock edges in a square wave [Mo094]. Biphase mark is widely used
in applications where data written by one device is read by another. It is an
industry standard for single density magnetic floppy disc recording and is one of
several protocols implemented by commercially available microcontrollers such
as Intel 82530 Serial Communications Controller [Cor91]. A version of biphase

* The work on this paper was carried out in partial fulfillment of the requirements
for the Master’s degree in Mathematics and Computer Science at the University of
Nijmegen. The thesis was written under the guidance of prof.dr. F.W. Vaandrager.

** Supported by the Netherlands Organization for Scientific Research (NWO) under
contract SION 612-316-125.



mark, called “Manchester”, is used in the Ethernet [Rod88] and is implemented
in the Intel 82C501AD Ethernet Serial Interface [Cor91].

We describe the biphase mark protocol using linear hybrid automata [ACHH93].
These automata model nondeterministic continuous activities of analog vari-
ables, as well as discrete events. The state of the automata changes either through
instantaneous system actions or, while time elapses, through differentiable en-
vironment activities. A hybrid system is described as a collection of hybrid au-
tomata, one per component, that operate concurrently and synchronize with
each other. The communication is achieved via shared variables as well as syn-
chronization labels. Model-checking based analysis techniques [ACHH93] have
been implemented in HYTEcH [HHWT95] and have been used to verify various
components of embedded systems [HWT96, HHWT95 HWT95].

In Section 2 we describe the individual components of the digital transmis-
sion system under consideration and give an informal description of the biphase
mark protocol. In Section 3 we present our system modeling language: linear hy-
brid automata. In Section 4 the biphase mark protocol is modeled as a parallel
composition of three linear hybrid automata and we discuss how the correct-
ness criteria have been automatically verified using the symbolic model checker
HYTECH.

The two main results established in this paper are:

— Linear hybrid automata enable a natural way of modeling the biphase mark
protocol.

— HYTECH easily verified the correctness of biphase mark for wider clock drifts
than those given in [Mo094].

However, we also we came across certain limitations of HYTECH, concerning
parametric analysis and some values of the parameters of the clock drift.

2 Informal Description of the Biphase Mark Protocol

In this section the individual components of the digital transmission system
under consideration are described. Fig. 1 shows the block diagram of the trans-
mission system. It consists of a digital source, a sender, a transmission chan-
nel, a receiver, and a digital sink. The digital source generates a bit sequence
a = (a1,...,ag) of length k, which is physically represented by the signal s(t)
and is to be transmitted to a digital sink. The transmitted signal s(t) is dis-
torted during transmission via the channel. The distorted signal at the end of
the transmission channel is denoted by d(t). An error-free transmission results
if the sink bit sequence b = (by,... ,b;) is identical with the source bit sequence.

2.1 Digital Source

The digital source repeatedly generates a bit sequence a = (a1, ... ,ax) of varying
length & > 0, which is kept in a list. The sender has access only to the first
element of the sequence. While bit a; is being transmitted, the digital source
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Figurel. Block diagram of a digital transmission system

makes sure that a; is removed from the list in order to provide access to the
next bit in the sequence in the case i < k. In the case ¢ = k, the sender can
observe that the last bit of the sequence was sent and stops transmitting until
the next bit sequence is generated. Notice that the generated bit sequences need
not be of the same length.

The amount of time which is available for the transmission of one bit is
defined as the bit duration T. We refer to 1/T as the bit rate, the unit of which
is bit per second.

2.2 Clock Signals

The sender and the receiver are digital clocked devices. By a clock signal we
mean a periodic rectangular signal z(t) as represented in Fig. 2(a). The begin of
each clock cycle is fixed by the leading edge of the signal. The length between two
neighboring leading edges is referred as to a clock cycle. In general it has to be
assumed, however, that the leading edges do not follow each other equidistantly,
and thus the clock cycles are not equal. This is then referred to as a jittering
clock signal. Fig. 2(b) shows an exaggerated example of a jittering clock. In
[Mo0094] the following assumption is made about the clock signal:

The clocks of both processors are linear functions of real time, e.g., the
ticks of a given clock are equally spaced events in real time. We ignore
clock jitter.

In this paper we do consider the more general jittering clock signals.
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Figure2. A graph of clock signals
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2.3 Sender

The sender encodes each bit a; in a cell according to a modulation technique
known as the biphase mark protocol [Moo94] (see Fig. 3). The biphase mark
protocol is a convention for representing both a sequence of bits and clock edges
in a square wave.

Define the cell size of a cell as the number of clock cycles available for the
encoding of one bit. Each cell is then logically divided into a mark subcell, con-
sisting of mark size clock cycles, followed by a code subcell, consisting of code
size clock cycles.

During the mark subcell the waveform is held at the negation of its value at
the end of the previous cell, providing an edge in the signal train which marks
the beginning of the new cell. During the code subcell, the signal either returns
to its previous value or not, depending on whether the cell encodes a 1 or a 0,
respectively.
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Figure3. Biphase mark terminology

2.4 Transmission Channel

The transmission channel encompasses all devices which lie between the sender
and the receiver. Its main component is the transmission medium which may be,
for example, a symmetric pair cable, a coaxial cable or an optical waveguide.

The transmission characteristics of the channel are time, frequency, ampli-
tude and temperature dependent. Therefore the transmitted signal is distorted
during transmission via the channel.

Let s(t) denote the channel input as a function of time; s(¢) could represent
a voltage or a current waveform. Similarly, let d(t) represent (the voltage or the
current waveform at) the output of the channel. The output d(¢) is called the



detection signal. It is a distorted, delayed and attenuated version of s(t). One of
the most distorting effects in most transmission channels is linear time-invariant
filtering [BG87]. Filtering occurs not only from filters inserted by the channel
designer but also from inherent behavior of the propagation medium. One effect
of filtering is to “smooth out” the transmitted signal s(¢) (see Fig. 4).

The following assumption about the output of the detection signal d(t) is
made in [Moo94]:

The distortion in the signal d(t) due to presence of an edge is limited
to the time-span of the cycle during which the edge was written. For
example we ignore intersymbol interference [Rod88].
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Figured. The relation between input and output waveforms for transmission channel
with filtering

2.5 Receiver

The digital receiver extracts information from the detection signal d(t) using a
threshold device for amplitude regeneration and a clock signal v(t) for determin-
ing the sample time at which the receiver samples its input signal. Analogous to
the sender’s clock we assume that the receiver’s clock signal also jitters. Thus,
the sample times #; do not follow each other equidistantly. The operation of the
threshold device can be described using its threshold value E. If the detection
signal d(¢;) at time ¢; is greater than the threshold value, the sample value is set
equal to 1. However, if d(t;) < E then the sample value is set equal to 0. Notice
that the use of a threshold device is equivalent with the assumption of [Mo094]:

Reading on an edge produces nondeterministically defined signal values,
not indeterminate values.

The receiver is generally waiting for the edge that marks the arrival of a cell.
The edge is detected by sampling the detection signal d(¢) at the end of each
clock cycle. When the receiver samples a value of d(t) which is different from
the previous sample value, it detects an edge in the signal train. Upon detecting
the edge, the receiver counts off a fixed number of cycles, called the sampling
distance, and samples the signal there. The sampling distance is determined so
as to make the receiver sample approximately in the middle of the code subcell.
If the sample is the same as the mark, then a 0 was sent; otherwise a 1 was



sent. The receiver then resumes waiting for the next edge, thus “phase locking”
into the sender’s clock. Phase locking is the activity of adjusting the clocks
of two or more processes so that all clocks tick “simultaneously”. A common
technique is for the sender to encode its clock in the signal stream and for
the receiver to adjust its timing accordingly. Phase locking is often done with
special device that changes the rate at which crystals vibrate. But by adopting
an artificially slow “virtual” clock, e.g., where one virtual tick occurs every n
physical ticks, it is possible to implement phase locking in software or firmware.
This is called “digital phase locking”. Biphase mark protocols are often used in
such implementations [Moo94].

We adopt the notation bpm(n, m,l) (abbreviation for biphase mark(n,m,l))
for the version of the protocol with cell size equal to n, mark size equal to m,
sampling distance equal to [. Examples of such configurations are bpm(18, 5, 10),
bpm(16,8,11), and bpm(32,16,23). The bpm(16,8,11) configuration is imple-
mented in the Intel 82530 Serial Communications Controller [Cor91]. The model
of Moore [Moo94] was not powerful enough to verify this configuration. In
[Mo0094] the configurations bpm(16,8,11) and bpm(32,16,23) are verified for
error tolerances of 1/32 and 1/18 respectively.

3 System Modeling Language

In this section we present our system modeling language. We closely follow in
content and presentation the work of R. Alur, T.A. Henzinger, and P.-H. Ho
[AHH93] and the user guide for HyTEcH [HHWT95].

3.1 Linear Hybrid Automata

Informally, a linear hybrid automaton [ACHH93] consist of a finite vector x of
real-valued variables and a labeled multigraph (V, E). The edges from E repre-
sents discrete system actions and are labeled with constraints on the values of
x before and after actions. The vertices of V' represent continuous environment
activities and are labeled with constraints on the values and first derivatives of
x during activities. The state of the automaton changes either through instanta-
neous system actions or, while time elapses, through differentiable environment
activities. We restrict ourselves to edge and vertex constraints that are linear ex-
pressions. A hybrid system is described as a collection of hybrid automata, one
per component, that operate concurrently and communicate with each other.
Communication is achieved via shared variables as well as synchronization la-
bels.

We use a simple railroad crossing [HHWT95] as a running example. The
system consists of three components: a train, a gate, and a controller. The train is
initially some distance — at least 2000 meter — away from the track intersection
with the gate fully raised. As the train approaches, it triggers a sensor — 1000
meter ahead of the intersection — signaling its upcoming entry to the controller.
The controller then sends a lower command to the gate, after a delay of up to



a seconds. When the gate receives a lower command, it lowers at rate of 9
degrees per second. After the train has left the intersection and is 100 meter
away, another sensor sends an exit signal to the controller. The controller then
commands the gate to be raised. The role of the controller is to ensure that the
gate is always closed whenever the train is in the intersection, and the gate is not
closed unnecessarily long. The linear hybrid automata for the train, the gate,
and the controller appear in Figs. 5, 6, and 7.
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Figure5. Train automaton
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Figure6. Gate automaton

Syntax. Let u be a vector of real-valued variables. A linear term over u is a
linear combination of variables from u with integer coefficients. A linear inequal-
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Figure7. Controller automaton

ity over w is an inequality between linear terms over u. A (closed) convex linear
formula over w is a finite conjunction of (nonstrict) linear inequalities over u. A
linear formula over u is a finite boolean combination of linear inequalities over
u. Every linear formula can be transformed into disjunctive normal form, that
is, into a finite disjunction of convex linear formulas.

A linear hybrid automaton A = (x,V,°, inv, dif , E, act, L, syn) consists of
the following components:

Data variables A finite vector * = (z1,... ,x,) of real-valued data variables.
For example, the position of the train is determined by the value of the
variable x, which represents the distance of the train from the intersection.
The variable ¢ models the angle of the gate. When g = 90, the gate is
completely open; when g = 0, it is completely closed.

A data state is a point s = (s1,...,S,) in the n-dimensional real space
R™ or, equivalently, a function that assigns to each data variable z; a real
value s; € R. A convex data region is a convex polyhedron in R*. A data
region is a finite union of convex data regions. A (convex) data predicate
is a (convex) linear formula over x, e.g., 1 > 3 A 3x2 < x3 + 5/2. The
(convex) data predicate p defines a (convex) data region [p] C R", where
s € [p] iff p[x := s]is true. A differential inclusion is a convex polyhedron in
R™. A rate predicate is a convex linear formula over the vector &(&1,... ,&y)
of dotted variables. The rate predicate r defines the differential inclusion
[r] € R™, where § € [r] iff r[& := §] is true. For each data variable z; we
use the primed variables z} to denote the new value of z; after a transition.
An action predicate ¢ = (y,q') consists of a set y C x of updated variables
and a convex linear formula ¢' over the set & W ¢’ of data variables and
primed updated variables. The closure {q} of the action predicate ¢ is the
convex linear formula ¢' A A\, ¢\, (#' = 2); that is, all data variables that are
not updated remain unchanged. The action predicate ¢ defines a function
[¢] from data states to convex data regions: for all data states s,s’ € R",



let s’ € [q](s) iff {g}[x,z’ := s, s’] is true. The action predicate g is enabled
in the data state s if the data region [¢](s) is nonempty.

Control locations A finite set V' of vertices called control locations. For ex-
ample, the gate automaton in Fig. 6 has the locations open, rising, low-
ering, and closed. A state (v, s) of the automaton A consists of a control
location v € V and a data state s € R". A region R = (J,cy(v,5,)
is a collection of data regions S, C R", one for each location v € V.
A state predicate ¢ = |J,cy (v,py) is a collection of data predicates p,,
one for each location v € V. The state predicate ¢ defines the region
[4] = Uyev (v, [po]). The region R is linear if there is a state predicate
that defines R. We write (v,S) for the region (v,5) U, , (' 0), and
(v,p) for the state predicate (v,p) U U, (v', false). When writing state
predicates, we use the location counter I, which ranges over the set V of
control locations. The location counter | = v denotes the state predicate
(v, true). The data predicate p, when used as a state predicate, denotes
the collection (J,cy (v,p). For two state predicates ¢ = (J,cy (v, py) and
¢ = UveV(U:p;)): we define ~¢ = UveV(U: —py), (pV@') = UveV(Uapv Vp;))
and (¢ A ¢') = Uvev(vapv A py).-

Initial condition A state predicate ¢ called the initial condition. For example,
the gate is initially in location open with the value of g equal to 90. In
graphical representations, if ¢° is of the form (v°,p°), a small incoming
arrow, labeled with p°, identifies the initial location v°.

Location invariants A labeling function inv that assigns to each control loca-
tion v € V a convex data predicate inv(v), the invariant of v. The invariants
are used to enforce the progress of a system from one control location to an-
other, because the control of the automaton A may reside in the location v
only as long as the invariant inv(v) is true. For example, in the gate automa-
ton, inv(open) = (g = 90), inv(lowering) = (g > 0), inv(raising) = (g < 90),
and inv(closed) = (9 = 0). The invariant for location lowering ensures that
the gate is lowered until it is fully closed, at which point control has to
move to location closed. In the graphical representation, an invariant true is
omitted. The state (v, s) is addmissible if s € [inv(v)]. We write X4 for the
admissible states of A, and ¢4 for the state predicate |, v (v, inv(v)) that
defines the set of admissible states.

Continuous activities A labeling function dif that assignes to each control
location v € V a rate predicate dif (v), the activity of v. The activities
contain the rates at which the values of data variables may change. While
the automaton control resides in the location v, the first derivatives of all
data variables stay within the differential inclusion [dif (v)]. In the gate
automaton, the rate predicate for locations open and closed is ¢ = 0, for
location raising it is ¢ = 9, and for lowering it is g = —9.

Transitions A finite multiset E of edges called transitions. Each transition
(v,v") identifies a source location v € V and a target location v' € V.
For example, the train automaton has three transitions; one from location
far to location near for entering the region immediately surrounding the
intersection, one from near to past for going through the intersection, and
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one from past to far for exiting the region around the intersection. Transitions
may optionally be assigned the urgent flag AsApP. Transitions so labelled are
called urgent
In addition, there is for each location v € V', a stutter transition e, = (v,v).
Discrete actions A labeling function act that assigns to each transition e €
E an action predicate act(e), the action of e. Control can proceed from a
location v to a location v’ via the transition e = (v, v') only when the action
act(e) is enabled. If act(e) is enabled in the data state s, then the value of the
data variables may change nondeterministically from s to some point in the
data region [act(e)](s). The action predicates can be used for synchronizing
hybrid automata via shared variables. All stutter transitions are labeled with
the action (x,x’ = x), and thus, leave all data variables unchanged.
Synchronization labels/function A finite set L of synchronization labels and
a labeling function syn that assigns to each transition e € E a set of syn-
chronization labels from L. The synchronisation labels are used to define the
parallel composition of two automa. If both automata share a synchroniza-
tion label a, then each a-transition (that is, a transition whose syncronization
label contains a) of one automaton must be accompained by an a-transition
of the other automaton. All stutter transitions are labeled with the empty
set of transition labels. For example, in the gate automaton, the transition
from open to lowering has the synchronization label lower, and this synchro-
nizes (i.e., must be taken simultaneously) with the transition labeled lower
in the controller automaton. In graphical notations we often write a for the
singelton set {a}.

Semantics. At any time instant, the state of a hybrid automaton specifies
a control location and values for all data variables. The state can change in
two ways: (1) by an instantaneous transition that may change both the control
location and the values of data variables, or (2) by a time delay that may change
only the values of data variables in continuous manner according to the rate
predicate of the current control location.

A data trajectory (4, p) of the linear hybrid automata A consists of a non-
negative duration § € RZ? and a differentiable function p : [0,0] — R" with
the derivative 228 for all ¢ € (0,9). The data trajectory (d, p) maps every real
t € [0,4] to a data state p(t).

A data trajectory (6, p) is a v-trajectory, for a location v € V if (1) for all
reals t € [0, 4], p(t) € [inv(v)], and (2) for all reals ¢ € (0, d), d‘;—it) € [dif(v)]. A
trajectory T of A is a infinite sequence

(vo,d0, po) =+ (v1,61,p1) = (v2,02,p2) = (v3,03,p3) = ...

of control locations v; € V and corresponding v;-trajectories (d;, p;) such that for
all i > 0, there is a transition e; = (v;,v;41) € E with p;11(0) € Jact(e;)](pi(6:)).

A position of the trajectory 7 is a pair (i,€) that consists of a nonnegative
integer i and a nonnegative real € < §;. The position of 7 are ordered lexi-
cographically: the position (i,d) precedes the position (j,€), denoted (i,4) <
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(j,€), iff either i < j, or i = j and d < e. The state at position (i,€) of T is
7(i,€) = (vi, pi(€)). The time at position (i,€) of T is the finite sum ¢, (i,€¢) =
(o< j<i 9j) +€ The duration of the trajectory 7 is the infinite sum &, = 35, 9;.

Parallel Composition. A hybrid system typically consists of several compo-
nents that operate concurrently and communicate with each other. We describe
each component as a linear hybrid automaton. The component automata co-
ordinate through shared data variables and synchronization labels. The linear
hybrid automaton that models the entire system is then constructed from the
component automata using a product operation.

Let A; = (1, V1, Y, invy, dif |, By, acty, Ly, syn,) and Ay = (x2, Vs, Y, inv,
dif 5, Eo, acta, Lo, syn,) be two linear hybrid automata. The product A; x A,
of A; and A, is the linear hybrid automaton A = (x; X T2, Vi x Vo, 9 A
oY, inv, dif , E, act, L1 U Ly, syn), where

— Each location (v,v") in V; x V5 has the invariant inv (v, v") = inv, (v)Ainva(v')
and the activity dif (v,v") = dif ; (v) A dif ,(v"). Thus, an admissible state of
A consists of an admissible state of A; and an admissible state of Ay, whose
parts coincide, and whose rate vectors obey the differential inclusions that
are associated with both components locations.
— E contains the transition e = ((v1,v]), (va, vh)) iff
1. there is a transition es = (va, v}) € Ey with syn(e2)NLy = @ and v = v};
or
2. there is a transition e; = (v1,v}) € Ey with syn(e;)NLa = @) and va = v};
or
3. there is a transition e; = (v1,v]) € Fy and a transition ey = (vs, vh) € E»
such that syn(ez) N Ly = syn(er) N La.
In case (1), act(e) = acta(e2) and syn(e) = syn,(e2). In case (2), act(e) =
acty(e1) and syn(e) = syn,(e1) In case (3), if acti(e1) = (y1,47) and
acta(ea) = (y2,4q5), then act(e) = (y1 Uya, ¢ Agh) and syn(e) = syn,(e1) U
syny(e2).

According to the definition of FE, the transitions of the two component au-
tomata are interleaved, provided they have no labels in L1 NLy. Labelsin L1 N L,
may be synchronized, and cause the simultaneous traversal of component tran-
sitions. When two transitions are synchronized, the set of updated variables of
the component transitions are joined together and the constraints on the up-
dated values are obtained by taking the conjunction of constraints imposed by
the component transitions. This explains the role of the updated variables in the
action predicates. In case (3), the stutter transitions of the component automata
result in stutter transition of the product automaton.

3.2 Reachability and Safety Verification

At any time instant, the state of hybrid automaton specifies a location and values
of all variables. If the hybrid automaton has location set V and n variables, then
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the state space is defined as V x R". We define the binary transition-step relation,
% , over admissible states such that (v, s) - (v', 8’) iff the state (v', s’) can be
reached from the state (v, s) by taking a transition. We assume that for every ur-
gent transition u, if (v, 8) == (v', 8”), then for all valuations sg satisfying inv(v)
there exists a valuation sy such that (v, sq) = (v', s). A location v is called ur-
gent if there exists a valuation s and an urgent transition u, such that u is enabled
at (v, s). No time is allowed to pass in such a location. Next we define the time-
step relation, - , such that (v,s) = (v',s’) iff v = ¢', and there exists a real
4 > 0 such that § > 0 implies v is not urgent, and there is a function f : [0, d] —
R™ such that (1) f(0) = s, (2) f(§) = &', (3) for all ¢ € [0, 4], f(¢) satisfiesinv(v),
and (4) for all time ¢ € (0, 6)(df1(¢)/dt, (df=(t)/dt, ... (dfn(t)/dt) satisfies act(v),
where f;(t) denotes the value of the ith component of the vector x in the val-
uation f(t). We now define the binary successor relation — 4 over states as
- U -%» . For a region W, we define post(W) to be the set of all successor
states of W, i.e., all states reachable from a state in W via a single transition
or time step. The region forward reachable from W is defined as the set of all
states reachable from W after a finite number of steps, i.e., the infinite union
post*(W) = J,~, post!(W). Similarly, we define pre(W) to be the set of all pre-
decessor states of W, and we let the region backward reachable from W be the
infinite union pre* (W) = J,5q pre'(W).

In practice, many problems to be analyzed can be posed in natural way as
reachability problems. Often, the system is composed with a special monitor
process that “watches” the system and enters a violation state whenever the ex-
ecution violates a given safety requirement. Indeed all timed safety requirements
[Hen92,AHH93], including bounded-time response requirements, can be verified
in this way. A state (v, s) is initial if v is the initial location, and s satisfies
the initial predicate. A system with initial states I is correct with respect to
violation states Y iff post*(I) N Y = 0, or equivalently iff pre*(Y) N T is empty.

HYTECH computes the forward reachable regions by finding the limit of the
infinite sequence I, post(I),post®(i),... of regions. Analogously, the backward
reachable region is found by iterating pre. These iteration schemes are semide-
cision procedures: there is no guarantee of termination.

4 Verification of the Biphase Mark Protocol

4.1 System Description

The system to be verified is modeled as the composition of three linear hybrid au-
tomata. Figure 8 shows a flow-graph of the automata. The nodes represents the
automata and the edges represents the communication between the automata.
Figures 9, 10, and 11 show a graphical representation of these automata. We use
the configuration bpm(18,5,10),that is, cell size 18, mark size 5, and sampling
distance 10, as a running example. The test automaton in Fig. 9 generates non-
deterministically one bit, say a;, makes a request to the sender to transmit a;,
checks if the receiver has received it correctly, generates the following bit a;1,
and so on till it chooses not to generate a new bit. In this way a bit sequence

12



(a1,... ,ag) is built up. Upon arrival of a request the sender automaton trans-
mits a signal according to the biphase mark protocol. If there is no request, the
signal is kept constant. The receiver also operates according to the biphase mark
protocol. Upon receiving a bit the receiver automaton passes that bit to the test
process.

Our model is based on the following assumptions.

— The distortion in the detection signal d(t) due to presence of an edge in the
signal s(t) is limited to the time-span of the sender’ clock cycle during which
the edge was written [Moo094].

— Reading on an edge, that is, reading during a sender’s clock cycle when the
signal s(t) changes its value, produces nondeterministically defined signal
values, not indeterminate values [M0094].

— The clock signals of the sender and the receiver are independent and jittering
(see Sect. 2.2).

Receiver
.

output_O

output_1
end_of_seq T
est

Figure8. Flow-graph of the model representing the automata and the communication
between them

Transmission Channel. In order to simplify our system, we assume that the
signal s(t) travels with negligible delay. Hence, we can model the transmission
channel as a discrete variable S g, with domain {0, 1,2}, representing the am-
plitude of the signal d(t). Let Sz (t) denotes the value of S at time t. We
define:

0 if d(t) is stable and low,
Ssig(t) =<1 if d(t) is stable and high,
2 otherwise.

In other words, we define S z(t) = 0 (Sig(t) = 1) if the receiver is able to
determine deterministically the value of the signal s(t) as low (high), that is,

after comparing the sample value d(¢) to the threshold value E, then the sample
value is set equal to 0 (1) (see Sect. 2.5). If this is not the case, we define
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S sig(t) = 2, which means that it is not always the case that d(t) > E iff s(t) > E.
In our model the sample value is then nondeterministically chosen. Notice that
S_sig(t) = 2 when the signal s(t) changes its value, according to our assumptions.
In our model the sender automaton only writes into the variable S, and the
receiver automaton only reads from the variable S .

Digital Source and Digital Sink. The digital source together with the digi-
tal sink are modeled by the test automaton in Fig. 9. Initially the test automa-
ton is in the OK location. Assuming the sender— and the receiver—-automata in
Figs. 10 and 11, the test automaton generates nondeterministically the source
bit sequence (ay, ... ,ax), builds the sink bit sequence (by,... ,b;) from the in-
formation passed from the receiver automaton, and checks if a; = b; for each
t=1,...,k, and k € N. This is easily proved by induction on the length of the
source sequence.

If £ = 0 then the test automaton can choose to stay in the OK location by
taking the action labeled with synchronization label end_of seq, which indicates
the end of a bit sequence, hence the empty sequence is then generated. Assume
for the induction hypothesis that a; = b; for i = 1,...k — 1. Assume further
that the test automaton is in the OK location. At the end of a bit cell, i.e.,
sender’s clock x is equal to 18, the test automaton makes a move, say, to the
I1 location. At the same time it makes a request to the sender automaton to
transmit the information bit 1, modeled by the synchronization label input_1.
Thus ar = 1. It stays in the I1 location till the receiver automaton passes
the received information bit by means of the synchronization labels output_0 or
output_1. In the first case the receiver has received a bit 0, that is b, = 0 and
the test automaton moves to the error location. In the second case b, = 1 and
the test automaton moves to the OK location. The error location can also be
reached from the I1 location via the actions labeled with the input_1, input_0, or
end_of-seq synchronization labels. This is the case when the sender automaton
has completed the transmission of one single bit, but the receiver automaton has
not yet received it. The case when the test automaton moves to the 10 location
is similar.

Sender. The sender is modeled by the sender automaton in Fig. 10. See also
Appendix A for the HYTECH code. Initially the sender automaton is in the
new_cell location and the value of the sender’s clock z is between 17 and 18
modeling the phase difference between the sender’s and the receiver’s clocks,
and the value of S g, is equal to 1. The auxiliary variable S ,rey with a domain
{0,1} is used to remember the last value of S g before it is changed to 2. The
initial value of S v is equal to that of Siz. Only in the new_cell location
the sender accepts a request to send a message bit. This choice results in a
sender that is not input enabled according to the theory of I/O-automata model
[LT89]. The sender in fact dictate the environment by saying when it is ready to
transmit an information bit. The reason for this choice is the complexity of the
test automaton, which is in fact “one bit buffer”. The input request is modeled
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end_of_seq

input_0 input_1

output_1 output_1

output_O

Figure9. The test automaton

by the input_0 and input_1 labels. After a request, say input_1, at the end of a
bit cell(z = 18), the sender changes the value of S g to 2, resets its clock and
moves to the mark_1 location. It remains there for the period of one clock cycle.
At the end of that cycle the sender moves to to the location code and sets S g,
to the negation of its value at the end of the previous cell, which is then kept
constant during the length of the mark subcell. At the beginning of the code
subcell the value of S g is set again to 2 for the duration of one clock cycle and
the sender moves to location code2. At the end of that cycle S, is set to the
negation of its value at the end of the mark subcell and returns to the location
new_cell. For each location v in this automaton, div(v,z) = [1 —€,1+ €], that is,
the tolerance of the clock z is at most e.

Receiver. The receiver is modeled by the receiver automaton in Fig. 11. See
also Appendix A for the HYTECH code. Initially the receiver is in the edge_detect
location and the value of the receiver’s clock y is equal to 1. In order to detect
an edge in the signal train, the receiver uses the discrete variable R ;v with a
domain {0,1}, initially set to 1. R ey represents the value of S, determined
at the last sample. At the end of each clock cycle (y = 1) the receiver samples
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x>17, x <18
Ssig=1Sprev=1

input_1
x=18 —
x:=0,S prev:=S sig, S sig:=2

x € [Ilwb, upb]

Figurel0. The sender automaton

the value of S . If the signal s(¢) has not achieved one of its extrema, that is,
Ssig = 2, the receiver must interpret this value nondeterministically as a 0 or
as a 1. This is modeled by two actions: Namely, the action that moves to the
edge_detect location, interpreting the value of S, as being equal to the value
of S at the time of the previous sample, hence no edge is detected; And the
action that moves to the receive location, interpreting the value of Sz as not
being equal to the value of S g, at the time of the previous sample, hence an edge
is detected. If Sz < 2 the receiver just read the value of S, and depending
on whether the value of R ., is equal or not equal to the value of Sz the
automaton moves to the edge_detect location or it moves to the receive location.
The receiver remains at the receive location for 10 clock cycles. At the end of the
10" cycle it samples S sig, passes the received bit to the test automaton, and
returns to the edge_detect location. Again if S i, = 2, the receiver must interpret
this value nondeterministically as a 0 or as a 1. For notational convenience, we
have used the “not equal” symbol <>. In the HYTECH code two cases are
distinguished, since HYTECH does not know disjunctions. For each location v
in this automaton, div(v,z) = [1 — €,1 + €], that is, the tolerance of the clock
x is at most e. We choose the value of € equal for both the sender—and the
receiver—automata.
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y=1,

R_prev=1 .
y=1, S sig<2, S sig=S prev \ ):i" Ssg=2
>

R_prev:=S sig,y =0 y=0

edge_detect
y<i1
y € [Iwb, upb]

Cager g
>_SIg<2, ig=
S sig<>R_prev, SSg=2
—
—
R_prev :=1-R _prev,
R_prev := S sig, y=0 y=10, y=10
y:=0 S sig<2, S sig<2, y=10, y=10,
S sig=R_prev S sig<>R_prev S sig=2 S sig=2
— — - —
output_0 output_1 ) output_0 output_1
y:=0 R _prev:=S dg, y:=0 R_prev := 1-R_prev,
y:=0 y:=0

Figurell. The receiver automaton

4.2 Specification.

In this section we specify two requirements of our systems. We consider a safety
requirement and a liveness requirement.

Safety Requirement. Our paradigm for specifying correctness is reachability
analysis, in which we label certain states as violating. The system is correct if
no violating states are reachable. In our case the violating states are specified as
l[test] = error, that is, our system is not correct if the test automaton is in the
error location. The following HYTECH code checks the safety requirement, and
generates an error trace if any exists, for error tolerance of 1/6.

var init_reg, final_reg, reached : region;

init_reg := loc[sender]=new_cell & 17<x & x<=18 & S_sig=1
& S_prev=1
& loc[receiver]=edge_detect & y=1 & R_prev=1
& loc[test]=0K;
final_reg := loc[test]=error;
reached := reach forward from init_reg endreach;

if empty(reached & final_reg)
then prints
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"Biphase Mark-18 verified for error tolerance 1/6";
else prints
"Biphase Mark-18 NOT verified for error tolerance 1/8";
print trace to final_reg using reached;
endif;

Liveness Requirement. For verifying the liveness requirement we again use
the paradigm of reachability analysis. We designed a test automaton which
checks whether, from each reachable state in which the actions labeled with
synchronization labels input_1 or input_0 are enabled, these actions indeed are
taken. HYTECH was not able to verify this. So, we design a simpler test en-
vironment. One automaton makes a request to the sender to transmit the bit
sequence (1,0,0,1) and then stops. Another automaton checks if the bit sequence
(1,0,0,1) is received. For all other received sequences the automaton moves to an
error location. The sequence (1,0, 0, 1) is arbitrarily chosen. This simple test is a
counter example to possibly trivially fulfilled safety requirement. See Appendix
B for the HYTECH code.

4.3 Analysis

The results of the analysis are summarized in Table 1.

Analysis of bpm(18,5,10). Moore proves in [Mo094] the correctness of the
configuration bpm(18, 5, 10) for tolerance of 1/18. This corresponds to a tolerance
of 5 %. He also suggests that the clock rate restrictions can be considerably
relaxed. His conjecture is that the protocol works for tolerance of almost 30 %,
that is, € ~ 43/143.

We verify the safety requirement for bpm(18,5,10) using an error tolerance
e of 1/5 (20 %). HYTECH successfully discovers that the violating states are
not reachable. The correctness of the transmitted sequence is verified in 92.05
seconds'. See also Appendix D.

Next, we generated an error trace for bpm(18,5,10) using an error toler-
ance of 1/4 (see Appendix C). This means that the error tolerance for which
bpm(18,5,10) works is in the interval [1/5,1/4). We tried a tolerance of 9/40,
which lies in the middle of [1/5,1/4), but HYTECH gave the error message:
“Computation overflow. Error in Multiplication”. This was also the reason why
a parametric analysis did not succeed.

Analysis of bpm(32,16,23). Moore proves in [Mo094] the correctness of
bpm(32, 16, 23) for tolerance of 1/32 (3 %).

We verify the safety requirement for bpm(32, 16, 23) using an error tolerance
e of 1/8 (12.5%). HYTECH successfully discovers that the violating states are
not reachable. We also were able to generate an error trace for bpm(32,16,23)
using an error tolerance of 1/7.

L All performance data in this paper were obtained on a SUN SPARCstation-20
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Analysis of bpm(16, 8,11). The model of Moore [M0094] failed to give a proof
for the correctness of the configuration bpm(16,8,11).

We verify the safety requirement for bpm(16,8,11) using an error tolerance
e of 1/11 (9 %). HYTECH successfully discovers that the violating states are not
reachable. We also were able to generate an error trace for bpm(16,8,11) using
an error tolerance of 1/10.

Tablel. Analysis results

Moore’s results

Configuration

Results in this paper

bpm(18,5,10)

1/18 (correct)

43/143 (?)

1/5 (correct)
1/4 (incorrect)
9/40 (?)

bpm(32, 16, 23)

1/32 (correct)

1/8 (correct)
1/7 (incorrect)

bpm(16,8,11)

1/11 (correct)

1/10 (incorrect)

5 Conclusions

Linear hybrid automata enable a natural way of modeling the biphase mark pro-
tocol. Both discrete and continuous phenomena can be modeled directly in this
formalism. The paradigm of reachability analysis enables us to specify safety-
and liveness requirements. It was not obvious how to specify these requirements,
but the literature gave us useful examples, which we used to model our re-
quirements. Thanks to the very nature of linear hybrid automata we were able
to relax one of the assumptions of Moore, namely that clock ticks are equally
spaced events in real time. HYTECH easily verified the correctness of biphase
mark for wider clock drifts than those given in [M0094]. We were not able to
present a parametric analysis of the protocol because of restrictions on the size
of the model that HYTECH can currently handle.
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A HYTECH code for the Biphase Mark Protocol
bpm(18,5,10) (a safety requirement)

define(lwb,4/5)
define (upb,6/5)
var
X, -- sender’s clock
Y, -- receiver’s clock
: analog;
S_sig, —-- value of the wire
S_prev, -- previous value of the wire
R_prev, -- previous value read by the receiver
: discrete;

automaton sender

synclabs: input_1, -- bit to send is 1
input_O, -- bit to send is O
end_of_seq; -- no bit to send

initially new_cell & x>17 & x<=18 & S_sig=1 & S_prev=1;

loc new_cell: while x<=18 wait {dx in [lwb, upbl}
when x=18 sync end_of_seq do {x’=0} goto new_cell;
when x=18 sync input_0 do {x’=0, S_prev’=S_sig, S_sig’=2}
goto mark_O;
when x=18 sync input_1 do {x’=0, S_prev’=S_sig, S_sig’=2}
goto mark_1;

loc mark_0: while x<=1 wait {dx in [lwb, upbl}
when x=1 do {S_sig’=1-S_prev} goto new_cell;

loc mark_1: while x<=1 wait {dx in [lwb, upbl}
when x=1 do {S_sig’=1-S_prev} goto code;

loc code: while x<=5 wait {dx in [lwb, upbl}
when x=5 do {S_prev’=S_sig, S_sig’=2} goto code2;

loc code2: while x<=6 wait {dx in [lwb, upbl}
when x=6 do {S_sig’=1-S_prev} goto new_cell;
end -- sender
automaton receiver
synclabs : output_1, -- received bit is 1
output_0; -- received bit is 0
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initially edge_detect & y=1 & R_prev=1;

loc edge_detect: while y<=1 wait {dy in [lwb, upbl}

when y=1 & S_sig<2 & S_sig=R_prev do {R_prev’=S_sig, y’=0}
goto edge_detect;
when y=1 & S_sig<2 & S_sig>R_prev do {R_prev’=S_sig, y’=0}
goto receive;
when y=1 & S_sig<2 & S_sig<R_prev do {R_prev’=S_sig, y’=0}
goto receive;

when y=1 & S_sig=2 do {y’=0}
goto edge_detect;
when y=1 & S_sig=2 do {R_prev’=1-R_prev, y’=0}
goto receive;

loc receive: while y<=11 wait {dy in [lwb, upbl}
when y=11 & R_prev=S_sig sync output_0
do {y’=0, R_prev’=S_sig} goto edge_detect;
when y=11 & R_prev=1 & S_sig=0 sync output_1
do {y’=0, R_prev’=0} goto edge_detect;
when y=11 & R_prev=0 & S_sig=1 sync output_1
do {y’=0, R_prev’=1} goto edge_detect;
when y=11 & S_sig=2 sync output_0
do {y’=0} goto edge_detect;
when y=11 & S_sig=2 sync output_1
do {y’=0, R_prev’=1-R_prev} goto edge_detect;
end -- receiver

automaton test

synclabs: output_1, -- received bit is 1
output_0, -- received bit is 0
input_1, -- bit to send is 1
input_O, -- bit to send is O
end_of_seq; -- no bit to send

initially OK;

loc OK: while True wait {}
when True sync end_of_seq goto 0OK;
when True sync input_1 goto I1;
when True sync input_0 goto I0;
when True sync output_O0 goto error;
when True sync output_1  goto error;

loc I0: while True wait {}
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when True sync output_0 goto OK;

when True sync output_1 goto error;
when True sync end_of_seq goto error;
when True sync input_1 goto error;
when True sync input_0 goto error;

loc I1: while True wait {}
when True sync output_O goto error;
when True sync output_1 goto OK;
when True sync end_of_seq goto error;
when True sync input_1 goto error;
when True sync input_0 goto error;

loc error: while True wait {}

end -- test

-- analysis commands

var

init_reg, final_reg, reached : region;

init_reg := loc[sender]=new_cell & 17<x & x<=18 & S_sig=1
& S_prev=1
& loc[receiver]=edge_detect & y=1 & R_prev=1
& loc[test]=0K;
final_reg := loc[test]=error;
reached := reach forward from init_reg endreach;

if empty(reached & final_reg)
then prints
"Biphase Mark-18 verified for error tolerance 1/6";
else prints
"Biphase Mark-18 NOT verified for error tolerance 1/8";
print trace to final_reg using reached;
endif;
-- analysis commands
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B HYTECH code for the Biphase Mark Protocol
bpm(18,5,10) (a liveness requirement)

automaton testInput
synclabs: input_1, -- bit to send is 1
input_0; -- bit to send is O

initially OK;

loc OK: while True wait {}
when True sync input_1 goto I1;

loc I1: while True wait {}
when True sync input_O goto I10;

loc I10: while True wait {}
when True sync input_O goto I100;

loc I100: while True wait {}
when True sync input_1 goto stop;

loc stop: while True wait {}
end -- testInput

automaton testOutput
synclabs: output_1, -- bit to send is 1
output_0; -- bit to send is O

initially OK;

loc OK: while True wait {}
when True sync output_1 goto I1l;
when True sync output_O goto error;

loc I1: while True wait {}
when True sync output_O goto I10;
when True sync output_1 goto error;

loc I10: while True wait {}
when True sync output_O goto I100;
when True sync output_1 goto error;

loc I1100: while True wait {}

when True sync output_1 goto stop;
when True sync output_O goto error;
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loc stop: while True wait {}
when True sync output_O goto error;
when True sync output_1 goto error;

loc error: while True wait {}
end -- testInput

-- analysis commands
var
init_reg, final_regl, final_reg2, reached : region;

init_reg := loc[sender]=new_cell & 15<x & x<=16
& loc[receiver]=edge_detect & y=1

loc[testInput]=0K
& loc[testOutput]=0K;

&

final_regl := loc[testOutput]=error;
final_reg2 := loc[testOutput]=stop;
reached := reach forward from init_reg endreach;

if empty(reached & final_regl)
then prints "Location ‘‘error’’ is NOT reachable";
else prints "Location ‘‘error’’ is reachable";
print trace to final_regl using reached;

[4

endif;

if empty(reached & final_reg?2)
then prints "Message ‘¢1001’’ is NOT received";
else prints "Message ‘‘1001’’ is received";
print trace to final_reg2 using reached;
endif;
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C Trace to the error location of bpm(18,5,10) for
tolerance of 1/4

Command: /home/infstud/sivanov/HyTech/bin/hytech -02 bfm18

HyTech: symbolic model checker for embedded systems
Version 1.04 10/15/96
For more info:
email: hytech@eecs.berkeley.edu
http://www.eecs.berkeley.edu/~tah/HyTech
Warning: Input has changed from version 1.00(a).
Use -i for more info

Will try hard to avoid library arithmetic overflow errors
Number of iterations required for reachability: 20
Biphase Mark-18 NOT verified for error tolerance 1/4

====== (Generating trace to specified target region ========

Time: 0.00
Location: new_cell.edge_detect.0K
x =18 &y =1& S_sig =1 & S_prev =1 & R_prev =1

Time: 0.00
Location: mark_1.edge_detect.Il
x=0&y=1%&S_sig=2 & S_prev=1 & R_prev =1

Time: 0.00
Location: mark_1.receive.Il
x=0&y=0%& S_sig =2 & S_prev =1 & R_prev =0

Time: 1.33
Location: mark_1.receive.Il
x=1%& 3y =5%& S_sig =2 & S_prev =1 & R_prev =0
VIA:
Time: 1.33
Location: code.receive.Il
x=1&3y =5 & S_sig =0 & S_prev =1 & R_prev =0

VIA 5.33 time units
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Time: 6.67
Location: code.receive.Il

x =5 & 3y =25 & S_sig =0 & S_prev =1 & R_prev = 0
VIA:
Time: 6.67
Location: code2.receive.Il
x =5 & 3y =25 & S_sig =2 & S_prev = 0 & R_prev =0

Time: 8.00
Location: code2.receive.Il
x =6 &y =10 & S_sig = 2 & S_prev = 0 & R_prev = 0

Time: 8.00
Location: code2.edge_detect.error

x=6&y=04%& S_sig =2 & S_prev =0 & R_prev =0
============ End of trace generation ============

Max memory used = 666 pages = 2727936 bytes = 2.60 MB
Time spent = 119.26u + 1.75s = 121.01 sec
total
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D Computational data for the verification of
bpm(18,5,10)

Command: /home/infstud/sivanov/HyTech/bin/hytech -02 bfm18

HyTech: symbolic model checker for embedded systems
Version 1.04 10/15/96
For more info:
email: hytech@eecs.berkeley.edu
http://www.eecs.berkeley.edu/ tah/HyTech
Warning: Input has changed from version 1.00(a).
Use -i for more info

Will try hard to avoid library arithmetic overflow errors
Number of iterations required for reachability: 22
Biphase Mark-18 verified for error tolerance 1/5

Max memory used = 611 pages = 2502656 bytes = 2.39 MB
Time spent = 90.88u + 1.17s = 92.05 sec
total
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