
IMPACT OF PRINCIPLES ON ENTERPRISE ENGINEERING

Op ‘t Land, M. (Martin), Martin.OptLand@capgemini.com
Capgemini, P.O. Box 2575, 3500 GN Utrecht, The Netherlands
Delft University of Technology, P.O. Box 5031, 2600 GA Delft, The Netherlands

Proper, H.A. (Erik), E.Proper@cs.ru.nl
Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands

Abstract

Increasingly, organizations make use of enterprise architectures to direct the development of the en-

terprise as a whole and the development of their IT portfolio in particular. This steering and directing

is done by means of principles, which are essentially regarded as constraints on the design space for

enterprise engineers, thus guiding them in their design efforts.

In this paper we study the potential constraining effect of principles on the design of enterprises as

well as the guidance designers may receive from these principles. We start by providing a brief dis-

cussion on the concepts of enterprise architecture and enterprise engineering. We continue by discuss-

ing a strategy to make principles specific and measurable enough to indeed allow them to constrain

design space. This is followed by a discussion of a number of examples, taken from real-life practice,

illustrating the steering effect of principles. Finally, we also briefly pay attention to the process that

may be followed in formulating and formalizing principles.

Keywords: Principles, Enterprise Architecture, Enterprise Engineering, Implementation

1965

1 INTRODUCTION

Large organizations increasingly make use of enterprise architectures to direct the development of the
enterprise as a whole and IT development in particular (Lankhorst et al 2005). These developments are
fuelled even more by government regulations such as the Clinger-Cohen Act in the USA (Clinger-
Cohen 1996), which requires government bodies to provide an IT architecture based on a set of archi-
tecture principles. A more specific way of expressing the role of enterprise architecture is to state: “ar-
chitecture is defined as normative restriction of design freedom” (xAF 2003 p. 25). In most (enter-
prise) architecture approaches, this constraining is done by means of so-called architecture principles
(IEEE 2000, TOGAF 2004). According to The Open Group Architecture Framework (TOGAF 2004),
“Principles are general rules and guidelines, intended to be enduring and seldom amended, that in-

form and support the way in which an organization sets about fulfilling its mission”. Such principles
typically address the concerns of the key stakeholders within an organization.

While several sources attribute a pivotal role to principles, a precise definition of the concept of prin-
ciples as well as the mechanisms and procedures needed to turn them into an effective means still lack.
Both IEEE (2000) and TOGAF (2004) position principles as a means to guide the design and evolu-
tion of systems, while xAF (2003) essentially defines (enterprise) architecture as a set of principles.
Nevertheless, no clear definition of principles and associated mechanisms and procedures are given.
This is also not the aim of this paper. This paper is, however, part of ongoing research in which we
indeed are progressing towards such a definition. The main contribution of this paper is an exploration
of the actual use of principles in practice in steering the development of an enterprise. For obvious
reasons, this practical use should strongly influence the definition of the concept of principles, as well
as the mechanisms and procedures needed to make it into an effective means. Several organizations
already apply architecture principles as a means to indeed steer their evolution. At the same time,
sources such as IEEE (2000), TOGAF (2004) and xAF (2003) do not provide a discussion on the po-
tential impact of principles on the development of enterprises, i.e. there is no discussion on their actual
“steering abilities”. This paper aims to provide an initial exploration of this ability.

The remainder of this paper is structured as follows. In the next section, we provide a brief discussion
on the concepts of enterprise architecture and enterprise engineering. We then continue by discussing
a strategy to make principles specific and measurable enough to indeed allow them to constrain design
space. This finally enables us to discuss the main contribution of this paper: an exploration of the im-
pact of principles on the development of enterprises. We do so by discussing a number of examples,
taken from real-life practice, illustrating the steering effect of principles. Finally, before concluding,
we briefly pay attention to the process that may be followed in formulating and formalizing principles.

2 ARCHITECTURE AND ENTERPRISE ENGINEERING

The aim of this section is to briefly introduce the concepts of architecture and its relation to enterprise
engineering. As our starting point, we chose xAF (2003) and Dietz (2005, 2006). First, we focus on
the development process of a single system, and the role played by architecture. We then broaden this
to the level of an enterprise, involving multiple systems. Finally we pose some challenges which arise
when operationalizing architecture as a set of principles.

In a development process several systems are involved. Most prominently, the object system (OS),
which is the system being designed, engineered and implemented. In addition to the OS, in this paper
we will also distinguish a using system (US) and the governing system (GS). The US is the system that
will use the functions or services offered by the OS, once it is operational. The GS governs the design,
engineering and implementation of object systems by means of an architecture, where this governing
is made concrete in terms of principles.

1966

Dietz (2006) elaborates the relationship between US and OS. According to Dietz, the development of
a single homogeneous system of any type can be understood as an instance of the Generic System De-
velopment Process (GSDP). This generic process is illustrated in Figure 1.

ontology ontology

technology technology

im
p
le
m
-

e
n
ta
ti
o
n

re
ve
rs
e
 e
n
g
in
e
e
ri
n
g

e
n
g
in
e
e
ri
n
g

im
p
le
m
-

e
n
ta
ti
o
n

using system
construction

object system
construction

object
system
function

design

analysis synthesis

functional
principles

constructional
principles

architecture

construction

design

function

design

Figure 1 Generic System Development Process (after Dietz 2005 p. 23)

The development of an OS is considered to consist of a design, an engineering and an implementation
phase. The design phase comprises a function design and construction design. Function design, the
first step in the design of the OS, starts from the construction of the US and ends with the function of
the OS. Function design delivers the requirements of the OS, so a black-box model of the OS. This
black-box model clarifies the behavior of the OS in terms of (functional) relationships between input
and output of the OS. The function model of the OS does not contain any information about the con-
struction of the OS. Construction design, the second step in the design of the OS, starts with the speci-
fied function of the OS and it ends with the construction model of the OS. Construction design bridges
the mental gap between function and construction, which means establishing a correspondence be-
tween systems of different categories: the category of the US (where the function of the OS is defined)
and the category of the OS. Construction design delivers an ontology, the highest level white-box
model, of the OS. This white-box model clarifies the internal construction and operation of the OS in
terms of collaboration between its elements to deliver products to its environment. By an ontology or
ontological model of a system we understand a model of its construction, which is completely inde-
pendent of the way in which it will be implemented using some underlying technological infrastruc-
ture. The engineering of a system is the process in which a number of white-box models are produced,
such that every model is fully derivable from the previous one and the available specifications. Engi-
neering starts from the ontological model, produces a set of subsequently more detailed white-box
models and ends with the implementation model. By implementation is understood the assignment of
technological means to the elements in the implementation model, so that the system can be put into
operation. By technology we understand the technological means by which a system is implemented.
A wide range of technological means is available, varying from human beings and organizational enti-
ties via ICT (e.g. phone, email, computer programs) to industrial robots, vacuum cleaners, cars, drill-
ing machines and screw drivers.

An important assumption for enterprise architecture is that the design freedom of designers is undesir-
able large xAF (2003 p. 25), and that as a consequence, the systems thus developed would typically be
suboptimal in use, maintenance and costs. Suppose for instance that the OS is an automated informa-
tion system X and the US is some department Y of the enterprise. Suppose furthermore that the project
which has to develop the OS involves the relevant parties from both OS and US. Then it is reasonably
to expect that the OS in itself will meet the needs of the US. However, even if this is the case, it is

1967

quite conceivable (and in practice quite common) that the resulting OS is suboptimal from the per-
spective of the enterprise. For instance, although information system X may proper support to depart-
ment Y, it may not connect well to other information systems of the enterprise or one of the third par-
ties in an extended enterprise. Or, it may work and connect well, but does not do so in a future proof
manner. Or, the development of system X has led to the introduction of new, costly or difficultly main-
tainable components. Of course, the typical cause of such phenomena is that the interests of far more
stakeholders than just the direct representatives of US and OS have to be guarded. This is where the
governing system (GS) needs to step in.

It is the responsibility of the GS to provide guidance to the development process in a way which bal-
ances and safeguards the interests, concerns and objectives of all stakeholders, by restricting the de-
sign freedom of a class of object systems. This is the starting point for xAF (2003 p. 25), who defines
architecture (1) conceptually as a normative restriction of design freedom and (2) operationally as a
consistent and coherent set of design principles that embody general requirements, where these gen-
eral requirements hold for a class of systems. As benefits of such a governing based on architecture,
xAF (2003 p. 10) a/o mentions improved integration, adaptability and agility. CIAO! (2006) and TO-
GAF (2004) add to these benefits ease of collaboration, interoperability and a free flow of information.

We now turn to the level of an enterprise. We define an enterprise as a heterogeneous system, consti-
tuted as the layered integration of three aspect systems, namely the Business system, the Informational
system and the Datalogical system (after Dietz 2006 p. 115). Dietz (2006 p. 71) defines enterprise en-

gineering as “the whole body of knowledge and know-how regarding the development, implementa-
tion and operational use of enterprises, as well as their practical application in engineering projects”.
The term “enterprise engineering” is used here in a broader sense, like in civic, electrical and me-
chanical engineering. Note the difference with the notion of engineering in the narrow sense as intro-
duced in GSDP: (1) it now plays a role in all life-cycle phases of a system and (2) the type of system
involved is now the (heterogeneous) system called the enterprise.

As enterprise architecture we will consider the architecture, so operationally the set of principles,
which is applicable to the enterprise. As a consequence, its principles can influence any aspect system
of the enterprise (Business, Informational, Datalogical), the integration of those aspect systems and
any life-cycle phase (development, implementation, operational use, maintenance etc.) of the systems.

As defined before, principles embody general requirements holding for a class of systems. xAF (2003
p. 10) illustrates this difference between general and special requirements as follows. Suppose we re-
quire for all cars of a car factory that the maximum speed should be at least 80 km/hour. For a specific
car type, we could additionally require that its maximum speed be at least 180 km/hour. This example
of a functional requirement has also a constructional counterpart in terms of material use (see Table 1).

perspective General special

functional • accounting should be in conformity with
European law

• the maximum speed of cars should be at least
80 km/hr

• this accounting system should handle $ and
€

• the maximum speed of this car should be at
least 180 km/hr

construc-
tional

• ICT-applications should be component based

• in cars, minimal 25% of the material should
be synthetic

• this system must be programmed in C++

• the body of this car should be fully syn-
thetic

Table 1 General and special requirements (xAF 2003 p. 10)

Having explored the concepts of enterprise engineering and enterprise architecture / principles, several
questions emerge, which we will discuss in the following sections:

• how do principles, usable as a steering instrument for the GS, look like?

• how do principles restrict and impact enterprise engineering?

• what process should we follow to formulate (a set of) principles?

1968

3 OPERATIONALIZING DESIGN RESTRICTIONS: PRINCIPLES

There is no clear definition yet of the concept of principles. As mentioned before, providing such a
definition is also not the goal of this paper. In this paper we aim to explore the impact of principles on
the development of enterprises. To operationalize this impact, however, principles should be specific
enough. This section therefore briefly surveys some considerations in making principles specific
enough to enable them to steer development.

Some generally accepted quality requirements for a (set of) principle(s) are (Davenport et al. 1989,
Tapscott and Caston 1993, IEEE 2000, TOGAF 2004, xAF 2003 p. 25):

• the set of principles should be consistent and coherent;

• the amount of principles in a set should be few;

• a principle should have a rationale, be stable, be specific, and be measurable/falsifiable.

Consider, as an illustration, Table 2. This set of example principles, taken from a real-life case, has
been documented using the IAFv3 (2005) style of documenting principles.

doc-part definition example (building on USACO 2000, principle 7)

name essence of the rule, easy to remember Re-use before buy before build

description brief, clear & precise/unambiguous
statement of the principle

We will consider re-use of existing applications, sys-
tems, and infrastructure before investing in new solu-
tions. We will build only those applications or systems
that will provide clear business advantages and demon-
strable cost savings.

motivation rationale behind the principle (bene-
fits, intentions, relationship with
other principles)

• Use and availability of effective packaged solutions
is increasing.

• Using tested solutions reduces risks.

• Reduces the total cost of ownership.

implication impact of the principle, e.g. on other
principles, design, maintenance

• Software license agreements and system develop-
ment contracts should be written to allow for re-use
across State government.

• “The definition of “reusable” will include solutions
available from other government entities (e.g., other
states, federal government, etc.).

• Areas that provide clear advantages and businesses
cost savings are likely to require quick adaptation.

• Must identify the areas in which the State is seeking
to distinguish itself.

assurance what & how will be measured to
verify that this principle is achieved

Degree of re-use and extern buying will be measured
and benchmarked against other states

Table 2 Documentation-standard for principles (IAFv3, 2005)

The core of a principle is formed by the description, which syntactically takes the form of a rule. In
current practice, this usually takes the form of informal statements such as (taken TOGAF 2004):

Users have access to the data necessary to perform their duties; therefore, data is shared

across enterprise functions and organizations.

This is a necessary basis to meaningfully complement the documentation of the principle with ingredi-
ents such as a rationale, ways of measuring compliance, etc.

When using architecture principles as the core element in enterprise architecture, informal statements
as exemplified above arguably do not provide enough precision to concretely limit design space. As a
result, they only have a limited power as a steering instrument. The call can already be heard for

1969

SMART (Specific, Measurable, Achievable, Relevant, Time-bound) treatment of architecture princi-
ples.

In Bommel et al. (2006) a first step was taken in making principles more measurable by formalizing
their formulation in a form of restricted natural language. The authors investigated the possibility of
using a business rule-like approach for this purpose. This investigation was motivated by the strong
parallel between business rules and principles. Consider for example the following statements taken
from the business rules manifesto (Ross 2003):

• Rules must be explicit. No rule is ever assumed about any concept or fact.

• Rules should be expressed declaratively in natural-language sentences for the business audience.

• Business rules should be expressed in such a way that they can be validated for correctness by

business people.

• Business rules should be expressed in such a way that they can be verified against each other for

consistency.

• Formal logics, such as predicate logic, are fundamental to well-formed expression of rules in busi-

ness terms, as well as to the technologies that implement business rules.

• Rules define the boundary between acceptable and unacceptable business activity.

• More rules is not better. Usually fewer good rules is better.

Business rules are traditionally aimed at constraining first order behavior. Principles can, however, be
regarded as second order business rules constraining second order behavior of systems, i.e. constrain-
ing their design/evolution space. A possible formalization of the TOGAF example principle would be:
• Each Enterprise-function has access to Data which some User [who supports that Enterprise-function] needs

for some Duties

• Each Organization has access to Data which some User [that belongs to that Organization] needs for some
Duties

The language used in this example is the Object Role Calculus (ORC) (Hoppenbrouwers et al. 2005),
which a further evolved variant of RIDL (Meersman 1982) and Lisa-D (Hofstede et al. 1993). As an-
other example, consider the following TOGAF principle:

Development of applications used across the enterprise is preferred over the development of

duplicate applications which are only provided to a particular organization.

A possible formalization of this principle would be:

• If an Application [that is used in some Organization] results from some Development, and this Application is
not a duplicate of another Application [that is used in another Organization than the former], then that Devel-

opment is preferred by the Enterprise that includes both Organizations and both Applications.

An important question in this example is the way one would have to measure when one application is
a duplicate of another application. In making such principles SMART, proper mechanisms should be
defined to determine whether one application is a duplicate of another one, or more appropriately,
whether one set of applications is a duplicate of another set. And more generally, in the aspect system
Business one would like to measure when one process is a duplicate of another process, in order to
detect process and organizational redundancy.

4 PRACTICAL APPLICATIONS OF PRINCIPLES

Principles have been introduced as a means for the coherent and consistent steering of change in an
enterprise. In this section we will elaborate how those principles influence the enterprise engineering
in practice. We saw already that documentation of the implications of a principle are required (IAFv3,
2005). To approach this finding of implications systematically, we first clarify the field of activity of
an Enterprise Engineer by introducing the Enterprise Engineering Framework (EEF). In this frame-
work, every cell represents a certain area of attention. Then we will show for a few real-life principles
the impact of such a principle, using the cells of the EEF.

1970

In the EEF, as we said in §2, an enterprise is treated as a heterogeneous system, comprising an inte-
grated whole of three aspect systems, namely the Business system, the Informational system and the
Datalogical system (after Dietz 2006 p. 115). Each of those three homogeneous systems, including its
integration, is part of the field of activity of an Enterprise Engineer, and therefore spans the dimension
System Type in the EEF (see Figure 2).

Context

Function

Construction

Implementation
Preparation

B (Business) I (Informational) D (Datalogical)

Parties and People

ICT and other means

General

System Type

Perspective

Figure 2 Enterprise Engineering Framework (EEF)

The second dimension of the EEF, the perspective, is mainly based on GSDP, which we discussed in
§2. The functional models and requirements of an object system, i.e. its black-box perspective, reside
in Function. The white-box models and specifications of an object system reside in two parts:

• Construction contains the implementation-independent model – ontology – of the object system;

• Implementation Preparation contains the implementation model of the object system.

The Perspective-dimension of EEF stops at the level of engineering in the narrow sense. The imple-
mentation, in which technological means are actually assigned to the elements of the implementation
model, is out of scope for EEF.

Would the Perspective-dimension only consist of function, construction and implementation prepara-
tion, then something would be missing. Indeed, those three perspectives contain inherent properties
about the object system itself. Following the distinction between function and purpose (Dietz 2006 p.
60), we need additional space for the relationship of the object system with its stakeholders, to express
e.g. purpose and value of that object system for its stakeholders. Therefore the perspective Context has
been added.

We illustrate the line of reasoning of the Perspective-dimension by an example of the B-system of
Rijkswaterstaat. Rijkswaterstaat is an agency of the Ministry of Transport, Public Works and Water
Management, which constructs, manages, develops and maintains the Netherlands’ main infrastructure
networks. For Dutch citizens, an important value is to keep “dry feet”, in other words, make sure the
land is not flooded by water. Rijkswaterstaat could support this by several products/services, e.g. by
facilitating large-scale evacuations or by sustaining the coastline; the last strategy will in turn need
other products/services like sand suppletion, artificial reefs, etc. Given the choice of product/service, a
delivery-chain and actor-roles may be discerned for e.g. sand suppletion. Finally a decision has to be
made who supplies the sand and checks the result. We summarize the conclusions, using the Perspec-
tive-dimension:

• Context: value for Dutch citizen = “To keep dry feet”;

• Function: sustaining the coastline, using as products sand suppletion or artificial reefs;

• Construction: model of actor-roles and delivery-chain for sand suppletion;

• Implementation-preparation: shows which market party supplies sand on request; shows which part
of Rijkswaterstaat decides where and when to supply sand and to check the result.

1971

On every level in the Perspective-dimension, principles can make a difference. On the implementation
level, this is easy to see: two bike-suppliers, which are the same in the perspective of Construction,
will have a different Implementation in organization and parties, depending if they chose for or against
the principle “outsource all production” (Op ‘t Land 2006 p. 6). The choice for the principle “we
should be agile” will touch all Perspective-levels: it will give the customer the feeling his interests are
early and easily heard and make the employee proud of working for such a state-of-the-art organiza-
tion (Context), the organization should be proactive in its value-propositions (Function), therefore the
organization should discern roles for requirements-elicitation and agility-measurement (Construction)
and the organization should execute the role requirements-elicitation in co-operation with its customer
(Implementation – parties & people), supporting by innovative Group Decision Support systems (Im-
plementation – ICT and other means).

We will now focus on a way in which the impact of principles on Enterprise Engineering can be de-
tected more completely and systematically, using the introduced EEF. As an example-principle we use
the Dutch government expression “de overheid vraagt niet naar de bekende weg”, roughly translatable
to “the government doesn’t ask the same question twice”. This means a citizen or company should
inform the Dutch government only once about the same fact (e.g. his income, cars, personal data etc.);
after that such a citizen/company may assume any Dutch governmental organization (so on national,
provincial, municipal or district water board level) is informed. This principle is specific and falsifi-
able; as soon as any Dutch public institution asks you information on the same subject twice, you
know they are trespassing. In Table 3 we have collected part of the impact-analysis of this principle on
Enterprise Engineering.

 Business Informational Datalogical

Context • reduction in tax burden
for citizen

• cost reduction for gov-
ernment

• more efficiency in gov-
ernment

• simplifying use of gov-
ernment services by citi-
zen

• government should moni-
tor privacy

• government should pre-
vent abuse of linking data

• government will be re-
sponsible for secure shar-
ing and saving of data

• also European authorities
will request information

• collected data should be
retrievable in several
formats

• data-exchange is based on
standard-formats

• data should be available
as backup

• technology infrastructure
should be available 24*7

Function • a government which ...
o is customer-oriented
o knows what’s she is

talking about
o has its house on order
o is serious with her cus-

tomers and the customer
data

• separate governments act
as a unity

• improved lead time of
government-services
(Quality of Business)

• it must be possible to
share data with European
authorities

• improved information
(Quality of Infomation:
response time, actuality,
reliability, completeness
etc.)

• data must be shared in
several (standard-) for-
mats

• data of the citizen should
be shared only when en-
crypted

• combining data from dif-
ferent sources

Construction New I-roles:

• discerning authentic reg-
isters (e.g. car license pla-
tes, trade register etc.)

• coordinating information

New D-roles:

• data manager

• data collector

1972

 Business Informational Datalogical

re-use

• certifying quality of digi-
tal service-delivery and
security

• authorization-manager

• auditor: who has seen
which information?

Implementation /
parties & people

• more time for officals to
improve decision-making
(saving time on data col-
lection and interpretation)

• less time spent for getting
information

• no longer record the same
data again & again in
several formats/systems

⇒ less people required

Implementation /
ICT and other
means

• less physical guichets
required

• DIGID (= Dutch unique
electronic citizen id)

• Connecting government-
websites to authentic reg-
istrations

• Pre-fill tax forms with
available information

• Implementation of IDA
(Interchange of Data be-
tween Administrations)

• less questionnaires

• national infrastructure for
(public) data-exchange
o e.g. an ESB

• redundant infrastructure

• standardization of data
storage

Table 3 Part of the impact-analysis of the principle "the government doesn’t ask the same

question twice", visualized in EEF-structure

We have now shown the impact of one principle on Enterprise Engineering in the EEF. Elaborating
the impact for more than one principle might lead to contradictions in implications. Consider, for ex-
ample, the following two principles: (A) “we prefer standard-packages over tailored solutions” and (B)
“we prevent vendor lock-in”. In an efficient market these two principles need not be contradictory.
However, in the specific market for operating systems of desktop-computers, currently not many al-
ternatives exist. Comparable contradictions in implications could be found when both the principles
“have flexibility in service-levels” (rationale: customer friendliness) and “standardize the work” (ra-
tionale: cost savings) are effective. By making visible the possible contradictions in implications, the
governing system (GS) is supported in prioritizing, either at the level of principles or at the level of the
specific case.

Using a framework such as the EEF provides several benefits. It helps to systematically find the im-
pact of principles in a short time-frame; e.g. most of the results in table 3 were produced by a student-
team in 7 hours, applying EEF for this real-life case for the first time. As a consequence it helps to
detect potential contradictions in principles, thus enabling prioritizing in principles or clarifying that
prioritizing for this contradiction has to be done on a case-by-case basis. Finally the EEF supports
traceability; in a cause-effect-reasoning, it makes clear what consequences are drawn from what prin-
ciples, thus enabling impact-of-change analysis the moment principles are no longer valid.

5 FORMULATING PRINCIPLES

An important remaining question is how to arrive at a set of (SMART) principles? In this section we
explore two alternative approaches to the formulation of principles (eventually we actually aim to in-
tegrate these two alternatives). The first alternative takes the perspective that the formulation of a set
of principles is a collaborative process involving several participants. In other words, it is a collabora-
tive process. Nabukenya et al. (2006) discusses a general process for the collaborative formulation or
policies (such as business rules and architecture principles). This general process can be specialized to
architecture principles as follows:
1. Formulation of the objectives for having the principles.
2. Identify & prioritize key objectives for principles

1973

3. Formulate candidate principles that address the stated objectives.
4. Identify & prioritize key principles
5. Elaborate key principles
6. Evaluate completeness of set of principles (go back to 4 if needed).

In the first step, the aim is to make explicit the goals for creating the principles in terms of stake-
holders’ concerns and objectives that should be addressed. This activity may be conducted by each of
the participants individually. Once these have been identified, the participants are then required to col-
lectively identify and prioritize the key objectives that should be addressed by the principles. This set
then scopes the next activity in which candidate principles are listed and gathered, which again should
be done by the participants individually. Each of the principles should be motivated in terms of the
objectives it addresses. The next step is to identify and prioritize the key principles, which should
again be done collaboratively. The resulting set of principles should be elaborated in the sense that
each principle should be made specific and measurable as discussed in §3. This should be done collec-
tively. Finally, the participants should evaluate the set of principles produced to see if they indeed
meet the set objectives.

The second alternative is described in Op ‘t Land (2005). This alternative is explicitly based on cause-

effect analysis and has been applied in both practical and educational contexts:
1. agree on the scope and the relevant stakeholders;
2. identify concerns of the stakeholders, based on their role and personal interests;
3. identify candidate-principles, derived from vision, mission and strategy of the scope;
4. identify implications of the candidate-principles, using an enterprise engineering framework;
5. detect contradictions in the principles, including the underlying assumptions;
6. define sufficiently different scenario’s and find no-regret principles;
7. prioritize according to the different stakeholders and their typical concerns;
8. give an integrated advice on the over-all prioritization of principles.

market-share

�

…

outcomescauseschange-able (root) causes

public

tendering �

product-administration

easy to build / generate
improve forecast

production capacity

rationaleimplications (candidate) principles

CashFlowout �CashFlowout �

CashFlowin �CashFlowin �

product-

diversity �

product-

diversity �

time to market

�

time to market

�easy change of

business partners

easy change of

business partners

use of

standards �

use of

standards �

let Arch-bureau

supervise standards

participate in

standards-committees

Types of implications
• impact on the architecture (restrictions in degrees of freedom)
• impact on the systems
•operational actions required
• control / governance actions required
•…

Figure 3 Part of a cause-effect diagram for principles (Op ‘t Land, 2005)

The first step limits the area of concern and the people to be involved and reckoned with. In step 2 we
realize that stakeholders are people: they have a role (e.g. CFO) and at the same time they have per-
sonal interests (e.g. “wants to get promotion within 2 years in that area”). Step 3 is executed to safe-
guard that principles are in line with and steered by the vision, mission and strategy of the area scoped.
Step 4 is the exercise we demonstrated in §4, using the EEF. In step 5 it is important to not only detect
contradictions in the principles, but especially to articulate the assumptions under which those contra-

1974

dictions occur; those assumptions might be subject to change indeed! For example, as we pointed out
in §4, the principles “standard-packages preferred” and “no vendor lock-in” need not be contradictory
in the situation of an efficient market; by making this assumption explicit, stakeholders become aware
of their dependency on market-efficiency or of their opportunities to stimulate the market. In step 6
scenario planning is applied to principle formulation. A few extreme alternative futures (= scenarios)
are drafted and the principles are tested against them, using the assumptions from step 5. If a principle
works in every scenario, it is a no-regret principle and consequently accepted; otherwise, either extra
investments are done to still let the principle work or “early warning indicators” are installed to see
which scenario becomes more probable. In step 7, for all stakeholders the principles are prioritized
according to their concerns; by comparing the difference in priorities also there no-regret principles
are found and underlying assumptions clarified. In step 8, the no-regret principles are accepted and on
the other principles negotiations take place, supported by the insights of the different interests.

The pivot in this approach is a cause-effect analysis, starting from concerns of stakeholders and ending
in implications. Figure 3 shows a part of such an analysis, starting from the concern to increase incom-

ing cash flows. This concern can be answered by decreasing time-to-market, increasing market-share
and increasing product-diversity. Both easy change of business partners and product administration

should be easy to build or generate positively influence time-to-market as well as product-diversity. In
its turn, the easy change of business partners is positively influenced by increasing use of standards
and increase public tendering etc. Somewhere “in the middle of the diagram” the candidate-principles
relatively easily emerge, at the same time clarifying (1) the rationale of each principle, (2) the implica-
tions of each principle and (3) the mutual coherence or contradiction of principles.

As a next step, we aim to better relate and integrate both ways of working into a more explicit and
elaborate way of working catering for the underlying cause-effect analysis and the collaborative nature
of principle formulation processes.

6 CONCLUSIONS AND FURTHER RESEARCH

In this paper we have studied some cases from industry, focusing on the impact of principles on the
design of enterprises as well as the guidance, which designers may receive from these principles. We
have explored how, using an enterprise engineering framework such as the EEF, the impact of princi-
ples can be systematically detected in a short time, thus clarifying mutual coherence, potential contra-
dictions and providing traceability. The process of formulating principles can base itself on more ge-
neric collaborative patterns in the area of strategy formulation. A promising technique here is the use
of cause-effect diagrams, because it readily connects concerns and rationales of stakeholders with im-
plications.

We have also identified some key areas that need further work. To make this more explicit, we are
currently working along the following lines to broaden and deepen the principles mechanism:
1. Gather documented examples, originating from a diversity of sectors, concerning the use of prin-

ciples in real-life practice. Note that with “use” we do not only refer to the act of putting them on
paper, but to documented impact on enterprise engineering. In other words, documenting their
shown ability to limit design space during enterprise engineering.

2. Further elaborate on strategies to formalize principles and their underlying domain concepts.
3. Get explicit insight in the impact of levels of principles. Some principles in an organization origi-

nate from higher organizational levels, others from industry standards, again others from external
authorities. How do the principles from this several levels and steering lines interact?

4. Work towards a more explicit definition of principle, while meeting the requirements put on them
from practical use. This should include a (formal) language in which to express the underlying
constraints on design space allowing/forcing for specific and measurable formulations.

5. Mechanisms to indeed enforce principles and guide designers in their design activities. How to
actually steer by using principles, e.g. by organizationally embedding the formulating of principles
and the issuing of building permits.

1975

6. A real-life tested way of working for finding/formulating principles, ensuring shared understand-
ing and shared commitment for the impact of these principles, taking both collaborative and cause-
effect reasoning into account,

7. Mechanisms by which principles can be rationalized in terms of an enterprise’s strategy. One
would typically expect principles to follow from an enterprise’s strategy. However, how this is to
take place exactly needs further investigation.

References

Bommel, P. van, Hoppenbrouwers, S.J.B.A., Proper, H.A., and Weide, Th.P. van der (2006). Giving
Meaning to Enterprise Architectures - Architecture Principles with ORM and ORC. In Proceedings
of the OTM Workshops 2006, (R. Meersman, Z. Tari, P. Herrero et al., Eds.), LNCS, Springer Ber-
lin Heidelberg.

CIAO! (2006) Research Program on Cooperation, Interoperability, Architecture and Ontology.
http://www.ciao.tudelft.nl/

Clinger-Cohen (1996), IT Management Reform Act, 1996, USA.
http://www.cio.gov/Documents/it_management_reform_act_Feb_1996.html

Davenport, T.H., Hammer, M. and Metsisto J. 1989, How executives can shape their company`s in-
formation systems. Harvard Business Review, 67(2):130-134, March 1989. doi:10.1225/89206

Dietz J.L.G. (2005). The third wave. Plenary presentation for the Dutch National Architecture Con-
gress 2005 (LAC2005). See http://www.lac2005.nl/Uploads/Files/Dietz.pdf.

Dietz J.L.G. (2006). Enterprise Ontology – theory and methodology. Springer Berlin Heidelberg.
Hofstede, A.H.M. ter, Proper, H.A., and Weide Th.P. van der (1993). Formal definition of a concep-

tual language for the description and manipulation of information models. Information Systems,
18(7):489-523, October 1993.

Hoppenbrouwers, S.J.B.A., Proper, H.A., and Weide, Th.P. van der (2005). Fact Calculus: Using
ORM and Lisa-D to Reason About Domains. In Proceedings of the OTM Workshops 2005, (R.
Meersman, Z. Tari, P. Herrero, Eds.), LNCS, Springer Berlin Heidelberg.

IAFv3 (2005) Integrated Architecture Framework version 3.9 Archifacts Reference. Material of the
course “IAF Essentials”. Capgemini

IEEE (2000), Recommended Practice for Architectural Description of Software Intensive Systems.
Technical Report IEEE P1471--2000, IEEE, Piscataway, New Jersey, USA, September 2000.

Lankhorst, M.M. et al (2005). Enterprise Architecture at Work: Modelling, Communication and

Analysis. Springer, Berlin, Germany, 2005. ISBN 3540243712
Meersman, R. (1982). The RIDL Conceptual Language. Technical report, International Centre for In-

formation Analysis Services, Control Data Belgium, Inc., Brussels, Belgium, 1982.
Nabukenya, J., Bommel, P. van and Proper, H.A. (2006), Collaborative Policy-Making Processes,

Technical Report: ICIS-R6036, December, Radboud University Nijmegen, The Netherlands.
Op ‘t Land, M. (2005) Principles and Architecture Frameworks. Educational material of University-

based Master Architecture in the Digital World. Radboud University Nijmegen, The Netherlands
Op ‘t Land, M. (2006). Applying Architecture and Ontology to the Splitting and Allying of Enter-

prises: Problem Definition and Research Approach. In Proceedings of the OTM Workshops 2006,
(R. Meersman, Z. Tari, P. Herrero et al., Eds.), LNCS, Springer Berlin Heidelberg.

Ross, R.G., editor (2003). Business Rules Manifesto. Business Rules Group, November 2003. Version
2.0. http://www.businessrulesgroup.org/brmanifesto.html.

Tapscott, D. and Caston, A. (1993). Paradigm Shift - The New Promise of Information Technology.
McGraw-Hill, New York, New York, USA, 1993. ASIN 0070628572.

TOGAF (2004). TOGAF - The Open Group Architectural Framework, 2004. http://www.togaf.org
USACO (2000). Enterprise Architecture Strategies, Conceptual Architecture Principles, USA/State of

Connecticut, version 8/22/2000, http://www.ct.gov/doit/LIB/doit/downloads/conarch.pdf
xAF (2003). Extensible Architecture Framework version 1.1 (formal edition); report of the NAF-

working group xAF. See http://www.naf.nl/content/bestanden/xaf-1.1_fe.pdf

1976

